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ENGINEERING APPLICATION OF NEURAL COMPUTING:

A STATE-OF-THE-ART SURVEY

1 INTRODUCTION

1.1 Background

In the past 5 years, neural networks, growing out of McCulloch and Pitts' computational model of
neuron (McCulloch and Pitts, 1943) and propelled by the works of Hopfield (Hopfield, 1982) and
Parallel Distributed Processing (PDP) research group (Rumelhart and McClelland, 1986), have
attracted tremendous enthusiasm and research interest from computer scientists, neurophysiologists,
and engineers. This remarkable phenomenon has paralleled research in Artificial Intelligence (Al) of
the 1970s. This new interest is supported by the realization that neural computing is inherently parallel
and functionally more close to the operation of the brain; that is, it has the capability of
self-organization or learning. In addition to the recognition of the capability of neural networks and
the development of computing technology, other factors have contributed to the explosion of interest
in this area: 1) it is a universal approximator or it is computationally complete, which means that an
appropriate neural network with appropriate training rules has the capability of solving virtually any
computational tasks; 2) it takes a middle ground between traditional mathematical approach and
symbolic AI approach by using numerical methods for learning and expansive representation
schemes, as well as a lopting a functional use of experimental knowledge; 3) it provides an alternative
with efficient performance in solving problems that are currently difficult for a conventional approach,
such as speech and natural language process, vision and image analysis, and pattern recognition with
the recent insight int3 algoritbms that improve the learning ability of a neural network; 4) it may
provide some insight into the computational characteristics of the brain; and 5) it is also intrinsically
feasible for the implementation of neural networks to massively parallel hardwares (Aleksander, 1989;
Barto, 1989).

Research interest and the increasing funding in neural networks have generated numerous kinds of
architecture and learning paradigms. With the advance and sophistication in some branches of neural
computing, the technology has been successfully tailored for a wide range of applications, such as the
modeling of cognitive process, language understanding, and pattern recognition, as illustrated by the
large range of subjects covered in papers appearing in conferences on neural networks (IEEE, 1987,
1988; NIPS, 1988, 1989; IJCNN, 1989, 1990). To facilitate the development and application of this
emerging technology, National Science Foundation (NSF) also established the Neural Engineering
Program in conjunction with other funding agencies such as Defense Advance Research Projects
Agency (DARPA), Office of Naval Research (ONR), and National Aeronautics and Space
Administration (NASA). It is obvious that with the advance and development of hardware and
software of neural networks, this new technology will potentially solve some difficult engineering
pioblems. Research in application of neural computing to engineering problems, especially civil
engineering problems related to U.S. Army Construction Engineering Research Laboratory



(USACERL) research, is still in its fledgling stage. Therefore, it is imperative to discern and evaluate
the state-of-the-art of neural computing technology and its practical applications in order to provide
insight into the potential opportunities and benefits in USACERL-related research.

1.2 Objectives and Approach

The main objective of this report is to provide a series of short descriptions of bow neural networks
have been used in fields related to USACERL research and to provide extensive references on seminal
works in neural computing. The approach was as follows:

0 Review new development and current research on different types of neural networks and
learning paradigms.

0 Review publications on neural networks applications to engineering problems related to
and/or of interest to USACERL research projects. Identify the methodologies of neural
computing to different applications and evaluate their potential for research projects in
USACERL.

• Provide a comprehensive set of bibliographic references on seminal and representative
publications in neural computing.

References

1. Proceedings of the IEEE First International Conference on Neural Networks, Institute of
Electrical and Electronic Engineers (IEEE), New York, June 1987.

2. Proceedings of the IEEE International Conference on Neural Networks, Institute of Electrical
and Electronic Engineers (IEEE), New York, June 1988.

3. Proceedingsof the 1988 Connectionist Models SummerSchool, D. Touretzsky, G. Hinton, and T
Sejnowski (Eds.), Carnegie Mellon University, Morgan Kaufmann Publishers, San Mateo, CA,
1989.

4. Proceedings of the 1988 IEEE Conference on Neural Information Processing Systems - Natural
and Synthetic: Advances in Neural Information Processing Systems 1, D. S. Touretzky (Ed.),
Morgan Kaufmann Publishers, San Mateo, CA, 1989.

5. Proceedings of the 1989 IEEE Conference on Neural Information Processing Systems - Natural
and Synthetic: Advances in Neural Information Processing Systems 2, D. S. Touretzky (Ed.),
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

6. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE
and the International Neural Network Society (INNS), Washington, D. C., 1989.

7. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE
and the International Neural Network Society (INNS), Washington, D. C., 1990.
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8. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE
and the International Neural Network Society, San Diego, 1990.

9. Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer (Ed.).
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

10. AlP Conference Proceedings 151: Neural Networks for Computing, J. S. Denker (Ed.), American
Institute of Physics (AIP), Snowbird, U, 1986.

11. Aleksander, I. (Ed.), Neural Computing Architecture, The MIT Press, Cambridge, MA, 1989.

12. Barto, A. G., Connectionist Learningfor Control:An Overview, COINS Technical Report 89-89,
Dept. of Comtuter and Information Science, University of Massachusetts, Amherst, MA,
1989.

13. Hopfield, J. J., "Neural Networks and Physical Sy,ems with Emergent Collective
Computational Abilities," Proceedings of the National Academy of Sciences, 79, 2554-2558,
1982.

14. McCulloch, W. S., and Pitts, W, 'A Logical Calculus of the Ideas Immanent in Nervous
Activity," Bulletin of Mathematical Biophysics, 5, pp. 115-133, 1943.

15. Rumelhart, D., and McClelland, J. (Eds.), Parallel Distributed Processing. Explorations in the
Microstructure of Conition; Vol. 1: Foundations, The MIT Press, Cambridge, MA, 1986.
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2 NEURAL NETWORKS

2.1 Introduction

Neural networks, also referred as Parallel Distributed Processing systems (PDP) and Connection-
ist systems, are computational methods inspired or looscly modelled after the structure and internal
information processing operations of the human brai. In general, according to Rumelhart, Hinton
and McClelland (1986), a neural network is made up with the following components:

0 Processing Units (neurons): the functions of each neuron are to receive signals, perform
simple computation, and send out signals through ongoing connections.

* Connections: each connection between neurons functions like a multiplicative filter with
its connection strength or weight.

* Rules of Activation Propagation.

* Rules of Learning.

* Network Architecture (Ibpology).

Based on the composition of the network topology, the form of activation functions and the rule of
learning, different kinds of neural networks have been developed. Some of the well-known networks
are Perceptrons (Rosenblatt, 1962), Adaline and Madaline (Windrow and Hoff, 1960), Hopfield net-
work (Hopfield, 1982), Boltzman Machine (Hinton, et al., 1983, 1984), Kohonen self-organizing net-
work (Kohonen, 1984), the competitive learning network (Grossberg, 1976; Rumelhart and Zipser,
1986), the Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 1987), the recurrent type
networks (Jordan, 1986; Elman, 1988; Williams and Zipser, 1989), and the Backpropagation networks
(Rumelhart, et al., 1986; Parker, 1982; Warbos, 1974). In general, learning mechanisms can be catego-
rized into three forms: supervised learning, unsupervised learning, and reinforced learning (Hinton,
1989).

One of the important features pertaining to neural networks is their capability of self-organization
or learning. When training a neural network, it is presented with examples or data of the concept to
capture. It then internally modifies its interconnection strength or weight of connections through the
rule of learning. After completion of the training session, the knowledge is stored in the pattern of
connection strengths of the network.

In the following paragraphs, different types of neural networks and their characteristics are de-
scribed. Relevant references are also included. It should be kept in mind that the references listed here
are by no means exhaustiv,. Our intention is to provide pointers for those interested in neurocomput-
ing application to fundamental works and noticeable achievements as well as the state-of-the-art re-
search in different branches of connectionist systems.
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General References
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18. McCulloch, W. S., and Pitts, W., 'A Logical Calculus of the Ideas Immanent in Nervous Activ-
ity," Bulletin of Mathematical Biophysics, 5, pp. 115-133, 1943.

19. Minsky, M., and Papert, S., Perceptrons, The MIT Press, Cambridge, MA, 1969; also the expan-
ded Edition, 1988.

20. Rosenblatt, F, "The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain," Psychological Review, 65, pp. 368-408, 1958.

21. Rosenblatt, F, Principles of Neurodynamics, Spartan Books, New York, 1962.
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23. Rumelhart, D., and McClelland, J. (Eds.), Parallel Distributed Processing' Explorations in the
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24. Sejnowski, T J., and Rosenberg, C. H., "NETlk: A Parallel Network That Learns to Read

Aloud," Report JHU/EECS - 86/01, The Johns Hopkins University, 1986.

25. Von Newmann, J., The Computer and the Brain, New Haven, Yale University Press, 1958.

26. Widrow, B., and Hoff, M. E., 'Adaptive Switching Circuits," 1960 IRE WESCONConvention
Record, New York, pp. 96-104, 1960.

27. Williams, R. J., and Zipser, D., "Real-time Recurrent Learning Algorithm," Connection Sci-
ence, 1(1), 1989.

2.2 Feedforward Multilayer Neural Networks

Feedforward neural networks, developed from Perceptron (Rosenblatt, 1958), are also referred to
as multilayer perceptrons. It may be claimed that the revival of neural networks research is closely
related to the development of backpropagation neural networks and the famous Generalized Delta
Rule (Rumelhart, et al., 1986). Because of their simplicity in learning and architecture construction, as
well as a sense of control over the training process, backpropagation neural networks have been widely
used in most of the applications involved with functional representation and mapping. However, one
of the drawbacks associated with multilayer feedforward networks is their slow convergence rate in
learning and the lack of a priori determination of architecture and the use of a priori knowledge.

Recently, several approaches have been proposed to improve the performance of backpropagation
neural networks. In general, there are these approaches to the problem: 1) using a better representa-
tion scheme for input and output, 2) employing higher order learning algorithms other than the gradi-
ent descent method, such as the quasi-Newton methods, 3) applying numerical techniques to prepro-
cess the input pattern to introduce independency into the input space, 4) designing innovative training
schemes so that certain knowledge is preoriented in the network before final training session, 5) incor-
porating network geometry adaptation with efficient learning algorithm to build a robust modeling
environment, and 6) determining the architecture and training with heuristic rules. The following
paragraphs describe perceptron, backpropagation networks, and their variants.
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2.2.1 Perceptron

The elementary perceptron is a two-layer feedforward neural networks consisting of the input layer
and output layer with the input units being fully connected to output units (Rosenblatt, 1958). The
network is basically a heteroassociative, nearest-neighbor pattern matcher in that it maps input
patterns presented at the input layer straightforwardly to output patterns at output layer. Connection
weights in a perceptron are adjusted using the Perceptron Convergence Theorem (Rosenblatt, 1962) or
the Delta Rule, and the activation function is the standard step function. Rosenblatt (1962) has shown
that the perceptron can solve a large number of linear mapping problems. However, due to the lack of
a hidden layer for intermediate relation representation, the perceptron failed to handle nonlinear
separable problems such as the encoding of the exclusive-or (XOR) function, and has poor
generalization capability. The critical analysis of perceptron by Minsky and Papert (1969) with regard
to its limited mapping capability and the lack of powerful training algorithm for multilayer
perceptrnns at that time in some way halted the development in neural network research in the 70's.

The training of a perceptron is an iterative process and the algorithm is:

* Randomly initialize the weights and threshold value at each units;

* Compute the output at each output unit:

Oj = f (ZWij ai-Oj )i

where f is a step activation function, Oj the threshold value, ai the input activation, oj the output
activation, and wij represents connection strength between input node i and output node j.

• Adjust weight using the Delta Rule: Awij = il (tj - oj) ai, where 7r is the learning rate and
tj is the expected output and oj is the network prediction.Soutpu layer,

Wij

Figure 2.1 - A Sample perceptron
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Because of the limited learning capability, the perceptron is mostly suited for linear mapping
problems with binary outputs. Recent research has shown that the capability of the perceptron can be
improved by incorporating the mechanism of higher order connectivity or higher order correlations,
and fuzzy logic (Maxwell, Giles and Lee, 1986; Keller and Hunt, 1985).

References

1. Keller, J., and Hunt, D., "Incorporating Fuzzy Membership Functions into the Perceptron
Algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7, pp.
693-699, 1985.

2. Maxwell, T, Giles, C., and Lee, Y., "Nonlinear Dynamics of Artificial Neural Systems," inAIP
Conference Proceedings 151: Neural Networks for Computing, J. Denker (Ed.), New York,
American Institute of Physics, 1986.

3. Minsky, M., and Papert, S., Perceptrons, The MIT Press, Cambridge, MA, 1%9; also the expan-
ded Edition, 1988.

4. Rosenblatt, F, "The Perceptron: A Probabilistic Model for Information Storage and Organiza-
tion in the Brain," Psychological Review, 65, pp. 368-408, 1958.

5. Rosenblatt, E, Principles of Neurodynamics, Spartan Books, New York, 1962.

2.2.2 Backpropagation Neural Networks

Backpropagation neural networks are multilayer feedforward networks with the Generalized Del-
ta Rule as their learning rule (Parker, 1982; Rumelhart, et al., 1986; Warbos, 1974). Learning in a back-
propagation network is supervised learning which means that the expected output is included in the
training data that the network is supposed to learn. The architecture for all backpropagation networks
is in a layered form consisting of input layer, output layer, and one or more hidden layers.

The training process via the generalized delta rule is an iterative process. Each training cycle in-
cludes two sessions: forward propagation of signals from input to output layer; and backward propa-
gation of error signals seen at the output layer. Thus each cycle involves the determination of error
associated with each output units and the modification of weights on the network connections. The
learning capacity of a backpropagation network depends on the number of nodes in the hidden layer(s)
and the pattern of connections between nodes in adjacent layers (Hornik, et al., 1989).

A feedforward network computation with these backpropagation neural networks proceeds as fol-
lows:

1) The units in the input layer receive their activations in the form of an input pattern and this

initiates the feedforward process,

2) The processing units in each layer receive outputs from other units and perform the following
computations:

-8 -



a) Compute their net input N,
M

k=1

ok = output from units impinging on unit j,
M = number of units impinging on unit j.

b) Compute their activation values from their net input values,
aj = FAN)
Fj is usually a sigmoidal function.

c) Compute their outputs from their activation values. In the neural network type used in
this study the output is the same as the activation value.
oj = aj

3) The output values are sent to other processing units along the outgoing connections.

4) This process continues until the processing units in the output layer compute their activation
values. These activation values are the output of the neural computations.

The modification of the strengths of the connections in the Generalized Delta Rule, described in
(Rumelhart, et al., 1986), is accomplished through the gradient descent on the total error in a given
training case.

Awj = 7) 6j o,

In this equation, 11 = a learning constant called the "learning rate" and 6j = gradient of the total
error with respect to the net input at unit j. At the output units, 6j is determined from the difference
between the expected activations tj and the computed activations aj:

6j = (I - a,) F'(N)
where F is the derivative of the activation function.

At the hidden units the expected activations are not known a priori. The following equation gives a
reasonable estimate of 6j for the hidden units:

M

6j (Z 6k wjk) F'(N)
k=1

In this equation, the error attributed to a hidden unit depends on the error of the units it influences.
The amount of error from these units attributed to the hidden unit depends on the strength of connec-
tion from the hidden unit to those units; a hidden unit with a strong excitatory connection to a unit
exhibiting error will be "blamed" for this error, causing this connection strength to be reduced.

Up to now, backpropagation neural networks have been utilized in most neurocomputing applica-
tions due to their robustness in learning. Problems suitable for using backpropagation networks usu-
ally have the following features: 1) Certain relationships exist between the input and output variables,
2) A comprehensive set of data from tests or experiments is available, and 3) The knowledge to capture
is included in the experimental data. A general architecture for backpropagation neural networks is
shown in Figure 2.2.

-9 -



Direction Direction
of hidde

Activation layers Error
Propagation Propagation

Figure 2.2 - A Sample Backpropagation Neural Network

From our discussion on the mechanism of backpropagation network, the main tasks involved in
using the network are: 1) determination of architecture and 2) learning algorithms for the training of
architectures. Though trial and error might have worked for certain simple problems in architecture
determination, new and adaptive schemes are required in order to tackle real world complex problems
with efficiency and elegance. In the following paragraph, some of the new approaches which in one
way or the other made some improvement on the standard backpropagation algorithm are succinctly
described.
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2.2.3 Gram-Schmidt Backpropagation Network

It is realized that the training of a backpropagation network will be much easier and the conver-

gence rate will be faster if the input vectors are least correlated, that is, orthogonal or independent.

Based on this observation, Orfanidis (1990) proposed the Gram-Schmidt Neural Nets by inserting a

Gram-Schmidt preprocessor at each layer in a regular backpropagation network. To store the prepro-

cessed input vector impinging at each layer, an additional vector Zn is required. The general architec-

ture of the Gram-Schmidt network is shown is Fig. 2.3.

The decorrelation process on the input vector X using the Gram-Schmidt algorithm proceeds as

follows: for i = 1, 2, . . ., M (number of units in a layer)

i-I
Zi = Xi- Ibij zj

j=1

or in matrix form, X = B Z, where B is a unit lower triangular matrix.

The training algorithm in the standard backpropagation mode is as follows:

1) Initialize the G weight matrix with random value and calculate the initial B matrix.

2) Feedforward computation: for k = 1, 2, ... , N (# of layers)

2.1) Solve Bk Zk = Xk for Zk through forward substitution,
2.2) Calculate Uk+1 = GkZk and Xk+l = f(Uk+ 1), where fis avector containing sigmoid

function evaluated with Uk+ 1

3) Error Calculation
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layer k layer k+ 1

Here Uk, Xk denote the input and output

vector at each layer, and Zk denotes the

Gram-Schmidt preprocessed vector at
layer k.

Uk, Xk, Zk uk+1, Xk+l, Zk+l

Figure 2.3 - A Sample TWo Layers in a Gram-Schmidt Network

3.1) At the output layer: eN = DN (d - XN), where DN = diag { f(uN) }.

3.2) At the hidden layers: for k= N-1, N-Z .... 2

Solve BkT tk = GkT ek+ 1 for tk through backward substitution

and calculate ek = Dk tk.

4) Weight Update

A1 -, k , Zik Zjk and Agij k = Jeik+ zjk.

It should be noticed that the effectiveness of using the Gram-Schmidt nets depends on the
eigenvalue spread of the covariance matrix R of the input pattern X0, where R is defined as:

R = 2 X°X ° .
patterns

If the ratio of the largest eigenvalue to the smallest eigenvalue of matrix R is large, the Gram-

Schmidt preprocessor will be very effective.
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2.2.4 The Cascade-Correlation Neural Network

As have been pointed out by Falman and Lebiere (1990), main problems associated with
convergence rate of backpropagation networks are the step-size problem and the moving target
problem. The former refers to the use of constant step size and the latter to the inability K idden
nodes in quickly captuiing regularity from only input signals and error signals without taking acccunt
of the lateral interactions, when the error surface changes frequently. Those problems are manifested
by the determination of network architecture, especially the determination of the number of nodes in
the hidden layers, which usually cannot be defined a priori. The Cascade-Correlation dynamic node
generation network (Fahlman and Lebiere, 1990) provides some rational thinking in solving the
learning problem.

A Cascade-Correlation Network starts with a basic network, then trains and adds new hidden
units one by one, creating a multilayer structure. There are two processes involved in the construction
of a Cascade-Correlation network. The first deals with the architecture generation and the second
deals with the learning algorithm. According to Fahlman's description, hidden nodes are added to the
network one by onc. Each hidden node receives a connection from each of the network's original in-
puts and also from every pre-existing hidden units. Once a unit is added to the network, its weight on
the input side is frozen and only the weight on the output side is trained. The unit creation algorithm
essentially performs following operations: firstly it starts with a candidate unit (or a pool of candidate
units) that receives connections from the network external inputs and from previous hidden units, with

No Hidden Units Outputs

The network is initially
Inputs 0" trained as a perceptron.

[ Initial State

Add Hidden Unit # 1

Outputs

The connections denoted by
Inputs solid line are frozen after

correlational training; the
remaining connections are
trained repeatedly.

State After Adding One Hidden Unit

Figure 2.4 - The Evolution of Cascade-Correlation Network
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the output of the candidate unit being disconnected to the trained network. Then the newly created
candidate network is trained by using quickprop (Fahlman, 1988) on the training sets and only the
candidate unit's input weights are adjusted after each pass. The training criterion for input weights is
to maximize the correlation measurement S defined as

S = I
o p

which is the sum over all output units o of the magnitude of the correlation between V, the candidate
unit's activation value, and E0, the residual output error observed at unit o. When S stops improving,
the new candidate is installed to the trained network and its input weights are frozen subsequently.
This process continues until the concept in the training sets is properly captured by the network. The
cascade architecture evolution process is illustrated in Fig. 2.4.

The main advantage of the Cascade-Correation Architecture over other existing learning algo-
rithms is that it learns very quickly and it systematically determines its network structure during the
training process. The power of this learning algorithm has been illustrated through modeling the two
spirals problem (Lang and Witbrock, 1988).
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2.2.5 The Self-Organizing Neural Network (SONN)

The SONN proposed by Tenorio and Lee (1989) is a supervised learning algorithm for architecture
construction and refinement in feedforward neural networks. The learning process is controlled by a
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modified Minimum Description Length criterion (Rissanen, 1983) which is also used as an optimality
criterion to guide the construction of the network structure, instead of the simplistic mean-square er-
ror. The search for the correct model structure or network architecture is accomplished via Simulated
Annealing (Kirkpatrick, et al., 1983) so that the node accepting rule varies at run-time according to a
cooling temperature schedule.

It should be pointed out that SONN is proposed to solve a general system identification problem
such that its structure bears some close relation to the representation of nonlinear rystems. The
SONN algorithm can be characterized by three components: 1) a generating rule of the primitive neu-
ron transfer functions, 2) an evaluation method to assess the quality of the model, and 3) a structure
search strategy via Simulated Annealing. The algorithm can be conceptually put in the following form:

1) Initialize the cooling temperature and the state with basic nodes,
2) Repeat the following procedures until the magnitude of the temperature is smaller than the

terminal temperature for simulated annealing:

1N epeat the following computations until the number of new neurons is greater than

the number of observations:
2.1.1) Use the neuron generating rule to produce new neurons to the structure and

calculate the energy corresponding to the current and new states;
2.1.2) If the energy of the new state is smaller than that of the current state, then

accept the neuron, else accept the neuron with a probability.
2.2) Decrease the temperature via geometrical annealing sequence.

The performance of the algorithm was illustrated through modeling a highly chaotic time series for
system iden .ication and short time prediction and through comparison with standard backpropaga-
tion networks. Though the search algorithm with Simulated Annealing is a non-deterministic scheme,
the SONN shows remarkable advantage over the standard backpropagation learning algorithm. The
SONN requires far less samples to acquire an estimation of the system and the structure of the net-
work is determined at run-time. Because of the use of Simulated Annealing in the learning algorithm,
it is less susceptible to the problem with local minima and the convergence of learning does not depend
on conditions of the initial set of weight. On the other hand, a system modeled with SONN algorithm
shows better performance in prediction. However, three types of nodes with different funcionalities
are defined in this network. Needless to say, this algorithm has more parameters and is more complex
than the straightforward backpropagation network. Certain fine tuning routines are needed for a
successful implementation of the algorithm.
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2.2.6 The GrowNet Algorithm

The GrowNet algorithm is proposed by Smith (1990) to solve the topology determination problem
associated with backpropagation networks. This approach bears some resemblance to the SONN
algorithm described in the previous subsection in that it uses a heuristic rule to choose the next step in
growing a net and each step is reversible; whereas the SONN algorithm adopts a stochastic search
algorithm to generate suitable topology.

The GrowNet algorithm begins with a simple network and tries to minimize the simplistic mean-
square error using gradient descent method. At each epoch, the prospect of further reduction on the
error is checked. If the prospect is not desirable, then the net is enlarged by a growth process, other-
wise the gradient descent continues. There are two components in the GrowNet process: a statistics
gathering epoch, and the growing of a node. The statistics gathering epoch includes the computation
of statistics on the correlation between the error of each node and the activation of other nodes, the
estimation on benefit of growth at each node, and the determination of the node that will offer the
greatest benefit after growing. Growing a node involves replacing the node with a more complex node
or a group of nodes. Similar to the SONN algorithm, three types of nodes with different activation
functions are also used in this network. The pseudocode as given in the report is as follows:

1) Declarations:
flag gatherstats;

2) Initialization:
Create net with a simple topology;
Unset gatherstats;

2) REPEAT
For (each exemplar) Do

Collect derivatives of net parameters;
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If (gatherstats is set) Then
Collect correlation statistics;

End [f;
End For;

If (task solved) Then
Exit REPEAT,

Elseif (gatherstats is set) Then
Select most promising node;
Grow most promisng node;
Imset gatherstats;

Elseif (no further reduction of error likely) then
set gatherstats;

Else
Update net parameters;

End If;
End REPEAT

The characteristics of different parameters in the tuning of this algorithm has been studied and its
performance on the Or-NxM tasks shows its promise in the improvement on the standard gradient
descent method. However, this algorithm is not extensively tested so that its power and shortcomings
are not well exposed yet. The best feature of this algorithm lies in its run-time determination of the
network configuration or architecture, its moderate computational cost, and its compatibility with the
standard backpropagation algorithm.

It is interesting to notice that SONN and GrowNet algorithms are seldom used by other research-
ers in the neural network community. One primary reason is that these two algorithms utilize three
types of nodes or computational units to build a network, which in turn introduces more complexity
and uncertainty in the implementation of these algorithms. Nevertheless, it is felt that these two algo-
rithms are not well explored and fully understood yet. There is still much work to be done in this
direction.
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2.3 Higher Order Schemes for Feedforward Networks

As has been stated before, the Generalized Delta Rule in backpropagation networks performs a
gradient descent search in the we-ight space for the minimization of a mean-squared error function.
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Therefore, it is easy to postulate that all the minimization schemes are applicable to the learning algo-
rithm derivation for multilayer feedforward n.tworks. From numerical analysis, the (steepest) gradi-
ent descent method is a first order scheme and has poor numerical property in terms of convergence
rate and the ability to handle ill-condit-oning of the system. Higher order methods such as Newton's
methods and Quasi-Newton methods by including information on the second order derivatives, that
is, the Hessian matrix of the system, have far better numerical properties than the steepest descent
method. However, the computation expense involved with the determination of higher order informa-
tion is very expensive and it also requires more storage space. On the other hand, the Conjugate Gradi-
ent Method or Preconditioned Conjugate Gradient Methods would provide faster learning algorithms
because of their superlinear rate of convergence and the saving in storage space (Hageman and Young,
1981; Golub and VanLoan, 1983).

Nevertheless, before a higher order scheme is considered as a legitimate candidate in the realm of
learning algorithms, it should be derived in a form which is computationally efficient and suitable for
local implementation. It should also conserve the intrinsic parallelism of operations of the network. In
a backpropagation network, the formula for weight update is:

Aw(t) = - aE/aw(t) + aAw(t -1)

where e is the learning rate and ot the momentum factor. The update of weights proceeds either in
batch mode or in on-line mode. The former refers to the update of weights only after all the training
sets have been presented to the network, and the later refer to the update of weights after presenting
each training set. For second and higher order algorithms, backpropagation is usually implemented in
the batch mode. It thus becomes obvious that any improvement on the learning algorithm alone
should involve the adaptive determination of the two learning parameters (e and ot), whereas these two
parameters are set as constants in the standard backpropagation network. To date, numerous
schemes have been proposed to improve the learning mechanisms in backpropagation networks by
incorporating higher order information of the system or using heuristic rules to guide the adaptation of
the learning parameters. In the following paragraphs, some of the new schemes are sketchily de-
scribed.
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2.3.1 Quickprop

The Quickprop algorithm was proposed by Falhman (1988) to improve the rate of convergence of
the backpropagation network through adaptive calculation of the momentum factor c. It is a second
order method in a sense, based loosely on Newton's method, but it is more heuristic than formal. The
information required is the gradient of the previous training epoch and that of the current, along with
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the difference between that of the previous and current. Therefore, the weight update formula is:
OE/Ow(t)

Aw(t) = - E aE/aw(t) + aE/aw(t- 1)- aE/w(t) Aw(t - 1)

According to Falhman, the Quickprop algorithm is derived based on two crude assumptions: 1)
the error vs. weight curve for each weight can be approximated by a parabola, and 2) the change in the
slope of the error curve, as seen by each weight. ;s independent of the other weights that are changing at
the same time. Though those are simple assumptions, the resulting algorithm gives substantial im-
provement on the convergence rate over the standard scheme when tested on the Encode/Decode
tasks. The speedup over standard backpropagation algorithm is about one order of magnitude (10
times) on training a small set of benchmark problems, and the algorithm seems scaled-up well.
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2.3.2 Quasi-Newton Style Methods

Direct use of the Newton Method to neural nework is inappropriate for the following reasons. At
first, Newton method gains quadratic or nearly quadratic convergence only when the starting point in
the solution space is within a convex region of the function and the size of that neighborhood dimi-
nishes with increasing number of variables, whereas a randomized initial weight matrix is routinely
used in training a neural network. Secondly, the computation of the Hessian matrix and its inverse
requires expensive computation and intensive storage (Dennis and More, 1977). Though a Quasi-
Newton method such as the BFGS (Broyden-Fletcher-Goldfab-Shanno) algorithm (Dennis and
More, 1977; Dennis and Schnabel, 1983) has better numerical performance, especially on the storage
usage, than the Newton method, like the Newton method it also uses global information for the updat-
ing of weights such that its use as an efficient learning rule for large problems in practice is question-
able. In this subsection, the BFGS method is briefly described to show the flavor of Quasi-Newton
methods. Some other schemes with a connection to the use of information on second order derivatives
are thus classified as Quasi-Newton style methods.

2.3.2.1 BFGS Method

The use of the BFGS method as a learning algorithm for feedforward networks has been investi-
gated by Watrous (1987). In nonlinear minimization, if the objective function or the error function is
approximated as a quadratic function through Taylor's expansion, then

E(w + Aw) = E(w) + gTAw + 1 AwTGAw
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where g is the gradient vector defined as g = V E(w), and G is the Hessian matrix. In the Newton

Method, the minimum can be directly computed by solving the system of equations, namely:

Aw = G-1 g

In a Quasi-Newton method, instead of calculating the Hessian matrix arid its inverse or solving a
system of equations, the inverse matrix of the Hessian is approximated iteratively with H. The basic
quasi-Newton algorithm consists of the following steps (Dennis and Schnabel, 1983):

1) Calculate a search direction s = - H g;

2) Perform line search in the s direction, that is, minimize E(w) along s;

3) Update H using different schemes such as the BFGS algorithm.

The difference among Quasi-Newton methods lies in the utilization of different updating schemes
for H. Nevertheless, the BFGS Hessian update is symmetric and positive definite, making the algo-
rithm numerically more stable than other schemes. If we define yi = gi - gi-1, and 8i = wi - wi-1, then
the BFGS update is of the following form (Dennis and More, 1977),

Hi = Hi-T + (1 + THV 661- 6 TH

In Watrous' study, the performance of BFGS algorithm is compared with that of backpropagation
on the training of the XOR problem and a small multiplexor problem. It was reported that the BFGS
method converged in significantly fewer iterations and had a better error tolerant property. However,
each BFGS iteration still requires O(n2) operations (Dennis and More, 1977), compared to O(n) for
backpropagation. On the other hand, because the method has not been extensively tested on different
problems, the robustness of the BFGS method is not well understood yet.

23.2.2 The Pseudo-Newton Algorithm

The pseudo-Newton algorithm was proposed by Becker and le Cun (1988) to approximate the in-
formation of the second order derivatives and to include it in the learning algorithm. The algorithm
only calculates the diagonal terms of the Hessian matrix and ignoring the off-diagonal terms. From
intuition on numerical analysis, the algorithm would work very well for diagonally dominant systems.
By using the absolute value of the diagonal Hessian terms, the pseudo-Newton step for weight update
is defined in the following form,

Aw = aE(w)/aw
a2E(w)/a2w +U

Where I is a small value to improve the conditioning of the Hessian when in regions of very small
curvature such as at inflection points and plateaus.

The performance of this algorithm has been tested on the encode/decode problem and appears to
have a slightly faster convergence rate. However, it is reported that if the initial weights are set to be
very large or very small values, the algorithm fails to converge. Besides, in some regions where the
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gradient is very steep and the curvature is very shallow, the algorithm tends to compute steps that are
too large. The problem might rest on the lack of line search routine with the use of second order infor-
mation. This indicates that care should be exercised in using higher order methods to the learning
problem because the system itself is more statistically bound.

2.3.23 The Optimal Second Order Methods (OSOM)

Parker (1987) derived his optimal second order methods by using an efficient approximation to the
Newton Method in the calculation of the second derivatives. Instead of minimizing the absolute
squared error of the system, it tries to minimize the average squared error which is expressed as expo-
nentially weighted average with time constant g. If the total squared error is represented as Te, the
the average squared error is defined as

t

EE = f J TE e-14t-rl dr

where e is the natural logarithms.

The optimality condition can be derived in two steps. Initially, calculate the derivative of the aver-
age squared error with respect to the weights by holding t temporally constant and set the derivative to
be zero. Then, define the optimality criterion in terms of the optimal path through weight space that
the weights should follow as the network is trained. That is, to reactivate the time variable and calcu-
late the derivative of tha, derived in the first step with respect to time, and let it be zero. The resulted
differeitial equation is then the first order optimal algorithm. Through applying numerical treatment
to the first order optimal algorithm, the second order algorithm is of the following form

a2w OET OET aE + 2ET Owa2t _+(wa + "-w-E

It is easy to realize that this algorithm is not simple and the implementation scheme should be
carefully derived. To date, the implementation scheme and its performance on numerical simulation
has not been reported though the author claimed that it would be published. Even with this shortcom-
ing, it is still worthwhile and insightful to look at the unique scheme in deriving the optimality criterion.
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2.3.3 The Delta-Bar-Delta Algorithm (DBD)

It has been observed through previous description on higher order schemes that incorporating
information on second order derivatives does not necessarily guarantee an improvement o,'er the
backpropagation learning algorithm. Experience shows that sometimes insightful heuristics would be
beneficial if they are properly appraised. Jacobs (1988) proposed the Delta-Bar-Delta algorithm for
adapting the learning rate with consideration to local gradient information. Inspired by Kesten's work
(1958) on the steepest descent method that the weight value is oscillating if consecutive changes of a
weight possess opposite signs, Saridis (1970) uses this observation to increase and decrease the learn-
ing rate in the following way: increasing the learning rate if consecutive deriv.,ives of a weight possess
the same sign, and decreasing the learning rate otherwise.

The Delta-Bar-Delta algorithm is derived based on the following heuristic rules: 1) Each weight
has its own learning rate, 2) Every learning rate should be allowed to vary over time, 3) Increase the
learning rate for a parameter if the derivative of the parameter possesses the same sign for several
consecutive time steps, and 4) Decrease the learning rate for a parameter if the derivative of the pa-
rameter flips signs for several consecutive time steps. Based on these heuristic rules, the scheme for
modifying the learning rate is defined as follows:

K if g(t - 1)g(t) > 0

AE(t) = 00 if g(t-1)g(t) < 0
0 otherwise

where g(t) = V E(w(t)) and g(t) = (1-0) g(t) + 0 g(t-1). The parameters of r, 4 and 0 are specified by

the user.

The performance of the algorithm has been studied in training of the Quadratic surfaces task, the
XOR problem, the Multiplexer problem and the Binary-to-Local prob'em and the speed-up ranges
from 2 times to 2 orders of magnitude depending on the nature of the problem. The problem with this
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algorithm is that the learning rate sometimes goes wild even with a small K, and the tuning of 4 is hard

and sometimes contradictory.

2.3.3.1 The Extended Delta-Bar-Delta Algorithm (EDBD)

The EDBD algorithm is designed by Minai and Williams (1990) to improve the performance of the
DBD algorithm with following modifications: 1) The learning rate increase is made an exponentially
decreasing function of I g(t) I instead of constant K; 2) Including the momentum part in the learning

algorithm and letting the momentum vary with time; 3) A ceiling is defined for both +'-- learning rate
and momentum parameter; and 4) Memory and recovery are incorporated into the algorithm. After
considering these modifications, the EDBD algorithm is of the following form:

Awij(t) = - t1ij(t) aE/aw1 t) + ijAwj(t - 1)

r/ij(t + 1) = Min[/ma,, r/ij(t) + Aj(t)]

pij(t + 1) = Min.uma,, pij(t)+ Aij(t)]
KI texp(- V, 13i(t) 1)

A1j(t) = -
0

K Kmexp(- m]3ij(t)I) if 3ij(t-1)ij(t) > 0

A/uij(t) = - Omlij(t) if 'ij(t - 1)6ij(t) < 0

0 otherwise

where 8ij(t) = V E(wij(t)) and 6ij(t) = (1-0) 8ij(t) + 0 3'ij(t-1). The parameters of Ki, 4,l, Timax, Y1 and

Km, 4bm, rmax, 0, yim are specified by the user.

hie performance of the EDBD algorithm is studied on the simulation of the XOR problem and the
quadratic function problem and it shows that the EDBD algorithm has converged in all the cases.
Besides, it is a more robust scheme than the DBD algorithm.
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23.4 Adaptive Stepsize On-line Backpropagation

Backpropagation can be implemented in batch mode or in on-line mode during training on the
data set. For second and higher order algorithms, only batch mode backpropagation is realized be-
cause of the nature of higher order methods. Using heuristics, Chen and Mars (1990) proposed an
on-line mode backpropagation learning with stepsize adaptation. The algorithm is as follows:

a(t) =a(t - 1) (1 - f(t) V Tft

f(t) = ujf(t - 1) + u2AE(t)

AE(t) = E(t)- E(t- 1)

where oe(t) is the stepsize for the gradient term in the weight update formula, AE(t) is the decrement of
E(t) and f(t) is a filtered version of AE(t). It can easily be seen that the equation for f(t) represents a
first order low-pass recursive filter. The parameters ul and u2 are used to control the adaptation. For
large ul and small u2, the adaptation is slow but more stable, otherwise the adaptation is fast but may
lead to oscillation. For the simulation problems, u1 = 0.9 and u2 = 0.3 have been used with success.

It has pointed out that this algorithm would work much better on complex problems than on sim-
ple problems because the adaptation process needs certain time to settle to be fully effective. The
disadvantage of this algorithm is that it is not effective on the flat region because the algorithm makes
the weights on the hidden units prematurely saturated. To overcome this problem, it is suggested that
differential step size should be used such that the step size for weight updating between hidden and
output layer is larger than that between the input and hidden layer, and usually the latter is about
0.1-0.5 of the former. Though performance of the algorithm is far better than the standard back-
propagation algorithm, it is a bit slower than Quickprop proposed by Falhman (1988).
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2.3.5 Minkowski-r Backpropagation

It is almost routine that most connectionist learning models are implemented using a gradient
descent in a least squares error function, that is, the error signals are Euclidian. People may then ask:
how about deriving learning models based on non-Euclidian error measurement? Hanson and Burr
(1988) answered this question with an elegant study on the backpropagation learning using Minkows-
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ki-r power metrics as the error measurement. The derivation of the algorithm is similar to that of
backpropagation by Rumelhart, Hinton and Williams (1986).

Using Minkowski-r power metrics, the error can be represented in the following general form:

E = 1 1(yi-yil

Then the gradient in the general Minkiwski-r case is

_.E = (y~il).l Yi(i-Yi)Yh sgn(yi-y)Whi

and the weight update formula is thus

Awhi(n + 1) - E aE/awhi + aAwhi(n)

The weight updating for the hidden layer proceeds in the same way as in the Euclidian case by simply
substituting the Minkowski-r gradient.

Through numerical analysis, the behavior of learning model changes with the variation of the pa-
rameter r because changing the value of r basically results in a reweighting of errors from output bits.
In one respect, varying the value of r may be useful for various aspects of representing information in
the feature domain. For example, if the distribution of feature vectors is non-Gaussian, then the r = 2
case, that is, the Euclidian error case, will not be a maximum likelihood estimator of the weights. In
fact, r = 1 would be right for modeling Laplacian type distribution. In general, when r < 2, it is recom-
mended that r = 1.5 may be optimal for many noise reduction problems; when r > 2, it tends to weight
large deviations such that simpler generalization surfaces may be created. However, it is observed that
the convergence time tends to grow almost linearly with the increase of r. On the other hand, the imple-
mentation of the learning algorithm is more complex as the Minkowski-r gradient is nonlinear.

This approach is unique in that it looks at the same problem from a different perspective. Of
course, further study is needed to explore the research and application potential in this direction.
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2.4 Other Approaches

In addition to the samples of algorithms described in previous paragraphs, there are a lot of other
algorithms which improve the learning performance of standard backpropagation network in one way
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or the other. The architectural determination of backpropagation network at run-time has also ex-
plored by other researchers (Bailey, 1990; Jockusch, 1990; Nevard, 1990). The learning models are also
generalized to the complex plane to handle a special kind of problem (Clarke, 1990, Kim and Guest,
1990). New schemes have been proposed by incorporating stochastic training techniques (Day and
Camporese, 1990; Kolen, 1988), using extrapolatory methods (Dewan and Sontag, 1990), including
fuzzy theory (Fu, 1990; Oden, 1988), and other algebraic and numerical techniques. To illustrate the
rich and fruitful research in this area, a selected reference listing is provided in this section. For details
of each algorithm, the original article should be consulted rather than the short description provided in
this section.
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2.5 Theoretical Analysis of Supervised Learning Models

The previously describe J approaches to the architectural determination of, and learning perform-
ance improvement on, the supervised learning models can be regarded as engineering approaches. On
the other hand, as a learning paradigm, neural networks have their intrinsic properties, such as their
dynamics, modeling capability, internal feature representation, and generalization characteristics.
The purpose of these kinds of theoretical studies is to understand the underlying properties and rules
that govern the behavior, operation and reasoning of differer.: neural network learning models such
that their application to real world problems would be well guided. A good example is the rigorous
mathematical analysis of Rosenblatt's Perceptron by Minsky and Papert (1969) to expose the exact
limitations of a class of computing machines that could seriously be considered as models of the brain.
Mathematical analysis, though it has its limitations, in most of the cases, shows the elegance of logic as
well as sober and rational thinking.
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In a general sense, from a numerical analysis perspective, ther are two salient features that govern

the operation of neural networks: the stability associated with feedback recall and the convergence
with supervised learning models. Global stability refers to the stabilization of the activation patterns
of a network from any input pattern, and convergence refers to the ability to reduce error measurement
of a system in a large enough time. Convergence can be represented in an absolute sense and in the
mean square sense (Papoulis, 1965). All the theorems concerning neural network learning are based
on the definition of global stability proposed by Lyapunov, which states that for all possible system
inputs X to a dynamic system, if X is zero only at the origin, having the first derivative defined in a given
domain and being upper-bounded, ther the system that is defined by a Lyapunov energy function of
the variables of X that maps n dimensions to one will converge and become globally stable for all the
;nputs X (Chetayav, 1961). There are three stability theorems for nonadaptive autoassociator (Cohen
and Grossberg, 1983), adaptive autoassociator, and adaptive heteroassociator (Kosko, 1988) respec-
tively (Simpson, 1990).

For multilayer feedforward networks, their general mapping ability has been proved by several
researchers and has generated more enthusiasm and confidence since then. On the functional model-
ing, Hecht-Nielsen (1987) uses Kolmogorov's superposition theorem to generally support the model-
ing capability of a multilayer feedforward network; Gallant and White (1988) shows that a three layer
network, with one hidden layer, is capable of embedding a Fourier analyzer by using the monotone
cosine squasher; and recently, Hornik, et al. (1989) proved that multilayer feedforward networks are
universal approximators. Issues like the corvpiedity of loading shallow neural networks, estimation of
neurons in the hidden layer, scaling property, and the mathematical theory of generalization, have also
been proposed and extensively studied (Judd, 1990; Wolpert, 1990). Due to time limitation, the details
of different approaches to the theoretical analysis, and that of different new learning theories are not
summarized here. The reference listing following will provide a fairly good picture of the current state
in this area.
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2.6 Recurrent Networks

Recurrent networks have emerged from the need to internally model time factors, time varying
behaviors, and sequential events. The learning model gets its name due to the very existence of recur-
rent or feedback links in the network. Recurrent networks usually assume a multilayer architecture or
without clear distinction from unlayered form in the network with fully recurrent links. Sometimes,
recurrent networks are referred to as recurrent backpropagation networks because of the close rela-
tion on the backpropagation learning algorithm (Pineda, 1987, 1988).

The representation of sequential events can be done with a time windowing scheme (Sejnowski and
Rosenberg, 1986) or using a crude version of backpropagation through time (Rumelhart, et al., 1986) in
which the recurrent network is unfolded into a multilayer feedforward network that grows by one layer
on each time step. Backpropagation through time only works well when the time structure of the prob-
lem is known a priori. For the time windowing scheme, as has been pointed out by Elman (1988),
following are some drawbacks: 1) Some interface mechanisms are needed to buffer the input, 2) The
approach does not easily distinguish relative temporal position from an absolute temporal position,
and 3) The shift register imposes a rigid limit on the duration of patterns and the length of the input
vector is fixed. All in all, the time is represented explicitly and the sequentiality is enforced onto the
network rather than internally constructed. To overcome those shortcomings, schemes are proposed
such that the representation of time is accomplished by the effect that it has on processing. To date,
there are basically three kinds of recurrent networks proposed: Jordan's Network (Jordan, 1986); El-
man's Network (1988); and Fully Recurrent Networks (Williams and Zipser, 1989). The application of
recurrent networks has covered an extensive domain including language processing (Behme, 1990;
Giles, et al., 1990; Grajski, et al., 1990; Liu, et. al., 1990; Stolche, 1990), processing of time dependent
parameters (Blumenfeld, 1990), pattern recognition and statistical classification (Wong and Vieth,
1990), learning stochastic sequence (McCuloch, 1990), vision (Qian and Sejnowski, 1989), and solving
constraint problems (Schaller, 1990).

In the following paragraphs, the architecture and operation of the three basic recurrent networks
are described and some references on the theoretical analysis of recurrent networks and their applica-
tions are also listed.

2.6.1 Jordan's Network

A Jordan network is a layered feedforward network with recurrent connections from the output
layer to a section of the input layer. The recurrent connections copy the output at previous time to the
input of the current time so that the hidden units see its own previous output and this knowledge then
influences the subsequent behavior if only one hidden layer is used in the network. The recurrent
connections are not trainable so that the recurrent network can be directly trained with the standard
backpropagation learning algorithm. However, the presence of nontrainable recurrent connections
limits the richness of time sequence representation. The architecture of a Jordan Network is shown in
Fig. 2.5.
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Figure 2.5 - Architecture of a Jordan Recurrent Network

2.6.2 Elman's Network

An Elman network is a modification of the Jordan network by introducing a set of context units in
the input layer and making the recurrent connections from hidden layer to the context units in the
input layer. The architecture of an Elman network is shown in Fig. 2.6. Like that in Jordan's network,
the recurrent links are not trainable and the activations of context units at current time are merely a
copy of those of the hidden units at previous time if a three layer feedforward network with one hidden
layer is used. The training of the network is accomplished via backpropagation learning algorithm and
the initial activations of the context units are set at 0.5 when the activation function is bounded in 0.0 to
1.0.

Though Eleman's modification on the Jordan network appears minor at first, it has infused a new
representation scheme into the network. Because the features of the input-output are represented in
the hidden units, the context units actually supply the network with a state identification for its pre-
vious state. The network still has the shortcoming of a Jordan network and the feature captured in the
context units may not be crisp enough to give well defined state identification if the training data sets
are noise contaminated.

2.6.3 Fully Recurrent Networks

In a fully recurrent network, tite concept of layering is lost because each neuron is connected to
every other neuron in the network and each one functions like both input and output units. For this
kind of network, a gradient following learning procedure called real time recurrent learning (RTRL)
has been proposed to suit the architectural complexity of the network (William and Zipser, 1989).
With the use of RTRL, the network runs continually in the sense that they sample their inputs on every
update cycle, and any unit can receive training signals on any cycle. In addition, it can solve problems
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Figure 2.6 - Architecture of an Elman Recurrent Network

requiring an input of arbitrary length and it correctly does credit assignment to past events. The major
drawbacks of using this kind of network via RTRL are that it is computationally very expensive to train
the network and the learning procedure for RTRL is a non-local method.

2.6.4 Others' Work

There are, of course, many improvements and new schemes based on Jordan and Elman's work.
Mozer (1988) made some improvement on the performance of the network by adding a layer of units
that each gave a single self-recurrent connection that is trained by a true gradient-following learning
rule. Pearlmutter (1988) proposed a scheme to improve the performance of backpropagation through
time and Almeida (1987), Pineda (1988), as well as Rohwer & Forrest (1987) all derived various ver-
sions of the recurrent network in which the network's actual and desired dynamics settling to a fixed
equilibrium state on each training cycle. Recently, a higher order recurrent network has been pro-
posed by Giles, et al. (1990).

It can easily be seen that recurrent networks will have strong potential in modeling the time varying
behaviors in engineering. In material modeling, recurrent networks have been proposed to model the
mechanical behavior of engineering materials under cyclic loading (Wu, 1990). The challenge is on the
identification of suitable problems and also the development of new and efficient learning algorithms
for this kind of network. The reference listing provides information on both theoretical analysis and
applications.
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2.7 Unsupervised Learning Systems

Unsupervised learning or self-organizing systems are primarily inspired by our understanding on
human information process from extensive research in the psychological and biological processes of
cognition. In unsupervised learning, the network is not taught the regularity and relations in the set of
training patterns, instead the network captures the regularities of the input vectors by using unsuper-
vised learning procedures. This phenomenon is remarkable because it provides a computational mod-
el with natural resemblance to the cognitive process of human beings. The capability of self-organiza-
tion also makes this kind of network a powerful tool for real-time pattern classification and signal
processing applications where the target classifications are not known a priori yet the data can be
sorted into different categories. On the other hand, from stability theory concerning the computation-
al properties of self-organizing networks, the stabilization of the system has a definite relation with the
minimization of an energy measurement of the system so that self-organizing systems have great po-
tential in solving constraint optimization problems. To date, Hopfield's network (Hopfield, 1982) and
Kohonen's self-organizing network (Kohonen, 1984) have been successfully used for some combinato-
rial optimization problems in different fields, including the traveling salesman problem (TSP).

In unsupervised learning, self-organization is imparted via learning rules based on Hebbian learn-
ing (Hebb, 1949) and Competitive learning (Grossberg, 1976; Rumelhart and Zipser, 1986) or variants
of both. In Hebbian learning, the modification of weights is based on the correlation between the
presynaptic and postsynaptic activity of a neuron. The weight of connection is increased if the correla-
tion is positive (excitation), otherwise the weight of connection is decreased. Competitive learning is a
pattern classification procedure for conditioning intra-layer connections in a two layer network such
that the input vectors are properly classified into distinct clusters. Competition and inhibition are two
basic mechanisms that provide dynamics to the system. For example, competitive layers and inhibito-
ry connections are salient features of the Kohonen network, the Counterpropagation network (Hecht-
Nielsen, 1987) and Adaptive Resonance Theory (Grossberg, 1976; Carpenter and Grossberg, 1986).

In this section, a brief overview is provided on some widely used unsupervised learning models and
some recent developments in the area. Note that the reference listing does not necessarily include the
early work on the analysis of different learning paradigms and such information can be found in nu-
merous books recently published on neural networks.

2.7.1 Hebbian Learning Rule

In self-organizing systems, most of the learning rules for modifying the connection strengths of
existing connections are a variant of Hebbian learning. Hebbian learning is a correlation rule based on
observations from physiological and psychological studies on cognition. In his book, Organization of
Behavior (1949), Hebb states that:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such
that A's efficiency as one of the cells firing B is increased.
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In simple terms, we can state Hebb's rule as: if a unit receives an input from another unit and both
are active, the connection weight between these two units should be increased. This simple learning
rule is usually put in the following mathematical form:

Awij = t7 ai a

where TI is the learning rate, ai and aj are activations of both units, and Awij is the modification on the
connection weight.

One disadvantage of using this simple correlation learning rule is that it is not goal bounded like
that of a delta rule. Different versions of the Hebbian style learning rule have been proposed by many
researchers. Sejnowski (1977) uses the covariance correlation to replace the simple correlation such
that

Aw j = q (ai- j) (aj- J)

where W, is the mean value. Sutton and Barto (1981) use the correlation of the mean value and the

variance in the learning rule in the following form:

Awij = n (i) (aj- J)

Klopf (1986) introduced the drive-reinforcement learning by using the correlation ;n the changes of
activation such that

Awij = ,i Aai Aaj

Of course, combinations of the above schemes also produce some new schemes, such as the one pro-
posed by Cheung and Omidvar (1988):

Awij = tj ai wij Aaj

A major improvement on Hebbian learning is the introduction of decaying effect, which has been illus-
trated by Grossberg (1968), Hopfield (1984) and others. The learning rule is:

Awj = - wj + F(a) F(aj)

in which F is the activation function. Based on this, Kosko (1986) proposed his differential Hebbian
learning in the following way:

Awij = -wij + F'(ai) F'(aj)

where F' is the derivative of F with respect to the activation value.

2.7.2 The Competitive Learning Architecture

The simplest form of competitive learning networks consists of two layers; the input layer for re-
ceiving input patterns and the competitive layer for classifying the input vectors (Rumelhart and Zips-
er, 1986). The weights are usually limited in the neighborhood of(,1), and the sum of weights to a unit
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is always 1. The competition in the competitive layer is accomplished through a winner-takes-all
scheme, in which the unit with the highest sum of weights is assigned as the winner. The activation of
the winner is then set at 1.0 and the remaining units are given the value of 0.0. The winner-takes-all
scheme can be represented in the following form:

1 if Nj (= Zajwji)>Ni, for all i, i j
aj 0 otherwise

where ai is the activation value of unit i. The weight updating is made after the winner is selected, and
only the weights that correspond to the connections to the winner are updated in the following form:

a,
Awij = (I- - W)

n

in which, "1 is the learning rate, and n is the number of units in the input layer that have activation levels
of 1.0. The simplistic architecture of the network is shown in Fig. 2.7.

The Competitive Layer

The Input Layer

Figure 2.7 - A Simple Architecture of a Competitive Learning Network

It should be pointed out that the competitive layer can also be implemented with inhibition con-
nections instead of the simple winner-takes-all scheme. With full or lateral inhibition connections, the
activation levels of the processing units gradually relax to the point where the unit with the highest
incoming sum remains activated so that it is chosen as the winner. Such a system would be more
biologically plausible.

2.7.3 The Hopfield Network

Hopfield introduced the binary version of the network in 1982 and later extended it to treat analog
values in 1984. The basic structure and operation of the two versions of the Hopfield network is essen-
tially the same. For simplicity, the binary version is described here.
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The Hopfield network is a single layer network in which each unit is connected to every other unit.
The network is recursive because the output of each unit feed into inputs of other units in the same
layer. The weight matrix is symmetric such that the network is able to converge to a stable state. Each
unit in a Hopfield network has a binary activation value or state, that is, one of the two binary states.
The state of the network at a moment is represented by a state vector containing the activation value of
each unit. The state of the network can be changed over time until finally it settles to a stable state; at
this moment, the corresponding energy measurement of the network reaches its optimum value %:.ich
is usually a local minimum of the energy function. To find the global minimum of the energy function
that the system represents or corresponds to, a restarting scheme or the use of Boltzmann and Cauchy
machines is needed.

There are two processes involved with the self-organizing process of a Hopfield network, namely,
the setting of connection weights and the state vector updating. The connection strengths or weights
are usually wired instead of through training. After the state vector is initialized, the updating of state
vector proceeds in a very simple procedure. For each neuron, calculate the weighted sum of its inputs.
If the sum is larger than or equal to zero, then change the activation of the unit to 1.0; otherwise set the
activation value to 0. Selection of the next unit for updating can be done sequentially or randomly.
This process continues through all the units in the network until a stable state of the network is
reached. The architecture of a Hopfield network is shown in Fig. 2.8.

mtn n

Wij
JWii = W-j

wji

Figure 2.8 - A Simple Architecture of the Hopfield Network

2.7.4 The Kohonen Self-Organizing Network

The Kohonen self-organizing network is specially designed by Kohoncn (1984) for regularity deter-
mination and feature extraction in the input patterns. Like the competitive learning network, the Ko-
honen network usually comes in two layers, an input layer for receiving input patterns and a competi-
tive layer processing the input information. Input patterns are classified by the units that they activate
in the competitive layer and the activation patterns of the competitive layer represent the identification
of the network. The competitive layer is commonly organized as a two dimensional grid. Full connec-
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tions from the input layer to the competitive layer are enforced and the connection strengths or weights
are initialized with random values. The general architecture of a Kohonen network is shown in Fig. 2.9.

Though the architecture of a Kohonen network is similar to that of a competitive learning architec-
ture, the self-organizing process or learning in the competitive layer is accomplished via a different
criterion. Firstly, a matching value that measures the closeness of a weight vector of each unit in the
competitive layer with the corresponding vector of input pattern is calculated by

lip-will = [>(p-wij)lp

in which, P is the input vector containing the activations of the input nodes, and Wi is the weight vector
of unit i in the competitive layer with connections to all the nodes in the input layer. The winning node
is identified with the minimum matching value. After identifying the winning node, the next step is to
select the neighborhood of nodes around the winner for weight updating. Only the weights of those
nodes in the winning neighborhood are modified with the following equation:

Awi ={a(pj - wi) if unit i is in the winning neighborhood

0 otherwise

where ot is the learning rate. Usually, the learning rate decreases as the training proceeds. On the other
hand, the size of the winning neighborhood in the competitive layer can be given a relative large width
initially, and then reduce the size with further training.

It is clear that a Kohonen network performs a feature mapping between the input pattern and the
representing weight vector and identifies the input pattern with activation pattern in the competitive
layer. The feature mapping capability makes this network suitable for applications in sensory motor
control, language processing and constraint optimization.

'The Competitive 
Layer

The Input Layer

Figure 2.9 - A Simple Architecture of the Kohonen Network
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2.7.5 Other Unsupervised Learning Models

There are many other unsupervised learning models such as ART - the Adaptive Resonance
Theory proposed by Grossberg and Carpenter (1976, 1987, 1988, 1990), which is a two layer, nearest-
neighbor classifier that stores an arbitrary number of spatial patterns using competitive learning;
BAM - the Bidirectional Associative Memory introduced by Kosko (1987,1988), using Hebbian learn-
ing to encode arbitrary spatial pattern pairs in a two layer, heteroassociative pattern matcher; and
FAM - Fuzzy Associative Memory also proposed by Kosko (1987). Another interesting architecture is
Hecht-Nielsen's Counterpropagation Network (1987). A counterpropagation network is actually a
hybrid three layer network, in which the hidden layer is a Kohonen competitive layer with unsuper-
vised learning and the rest are standard backpropagation layers trained with the Generalized Delta
Rule. Due to time limitation, we cannot describe all the other networks in this survey. The following
list of references will provide pointers to recent development in unsupervised learning paradigms and
related works.
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3 ENGINEERING APPLICATIONS

3.1 General

Tb date, the resurgence of research in neural networks not only has advanced the technology in
some branches of networks and resulted in sophisticated modeling tools but also has generated vari-
ous applications in many disciplines. In addition to intensive research and application in the tradi-
tional areas such as the modeling of cognitive process, pattern recognition, and language processing, a
strong trend is seen in the application of neural networks to real engineering problems. As a by-prod-
uct of this endeavor, many innovative engineering approaches have also been introduced to the devel-
opment of neural network based modeling systems.

Because of the characteristics associated with neural network modeling, there are several kinds of
engineering problems that are suitable for this technology. As a knowledge representation tool, neural
networks can be used in modeling the behavior of engineering material in structural engineering and
computational mechanics, system identification, control, and prediction. As a computational tool,
Hopfield-type networks have found extensive applications in planning, scheduling, and optimization.
As a classifier and pattern matcher, neural networks can provide an alternative in solving problems
associated with pattern recognition, diagnostics, maintenance, and image processing.

It should be realized that neural networks are only a tool for some specially suited problems, and
there is still a long way to go before this technology becomes a sophisticated entity in the tool box for
engineers. The current application of neural networks is more of an art than a science because the
implementation process involves a lot of heuristics and engineering judgement. The success of appli-
cation, in some ways, depends on the modeler's understanding of the problem and the selection of
certain parameters in using a neural network. At this stage, the most effective use of this technology
may rest on the development of systems combining a traditional approach with this technology.

In the following paragraphs, some of the applications in different engineering fields are described
and relevant references provided. As it has been noted before, the reference list is by no means exhaus-
tive and we owe an apology to those researchers whose work has been overlooked due to time limits on
preparing this report.

3.2 Hybrid Systems and Their Applications

As mentioned before, neural networks reside on the middle ground between a pure mathematical-
ly based engineering approach and the symbolic dominant Al approach. A system combining the
computational capability of neural networks and the deep reasoning ability of KBES (Knowledge-
based Expert Systems) would most likely offer new insight and powerful tools in engineering problem
solving. The objective of building hybrid expert systems, that is, integrating neural networks and ex-
pert systems, is to explore the advantages and neutralize the disadvantages of both systems.

In a hybrid expert system, neural networks usually function as a classifier for data evaluation, regu-
larity detection and classification or as an optimizer for solving a multiconstraint optimization prob-
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lem in KBES. In the last few years, hybrid systems have been successfully constructed in planning,
scheduling, diagnosis, and decision making. In general, as summarized by Rabelo, Alptekin and Kiran
(1990), the integration of Neural Networks and KBES takes these forms: 1) Neural Networks are used
for knowledge representation, and the represented knowledge is then translated to rules to a KBES for
symbolic manipulation, 2) a KBES is used to obtain a preliminary solution, which is then optimized by
Neural Networks, and 3) Neural Networks are used within a KBES to perform tasks that explicit rules
would be too complex to build.

There are, of course, many more variations on the design of a hybrid system. In the following
paragraphs, some of the typical approaches on the construction of a hybrid system are described and
an overview of their applications as well as references on the development of Connectionist Expert
Systems (CES) are also provided. It should be pointed out that CES are different from the simple
integration of KBES with neural networks, rather that CES are standalone systems capable of rule
extraction and generalization within themselves (Gallant, 1988). Some research works on novel ap-
proaches to rule extraction from connectionist systems are also included for reference purpose.

3.2.1 The Three-Stage Integration - Hillman (1990)

According to Hillman (1990), three stages are involved in building a hybrid expert system:

1. The data and information obtained are preprocessed by the expert system;

2. The preprocessed data are filtered through a neural networks for evaluation, regularity detec-

tion and classifications;

3. Results from the neural network are analyzed and synthesized by the expert system.

The advantage of using a neural network as a data evaluator and regularity detector is the simplifi-
cation of the rule building process in data evaluation, reducing the execution time. It is apparent that
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Figure 3.1 -- The Three-Stage Approach to the Hybrid KBES
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software tools for interface are of primary importance in the integration process of the hybrid system.
In Hillman's toy problem, two commercially available packages - AUBREY and NeuroShell (Ward
Systems Group, Inc.), were used. This approach is illustrated in Fig. 3.1.

3.2.2 Two-Stage Integration - Benachenhou, et al. (1990)

Similar to the three-stage approach, the two-stage approach usually takes the following forms: 1) a
neural network works as a preprocessor for an expert system, and 2) another neural network works as a
postprocessor on results from the expert system.

In this paper, a hybrid system consisting of a feature-based knowledge system and an ART1 (Car-
penter and Grossberg, 1987) network is used for the inverse problem of image processing, that is, sort-
ing images by clustering instead of extracting features from images by clustering in the direct image
processing problem. The knowledge based system provides a training environment by giving a few
known features of different images and the ART1 network then sorts those images into unknown num-
bers of classes by using its clustering capability. The advantage of using ART1 is that it can work on an
open set of samples, whereas for the Kohonen network the number of clustering groups should be
known a priori. Thus the system can be used to classify unfamiliar images into new classes.

The system is applied to clustering a small set of primers among a large open set generated by a
rule based system and uses the sorted results in the diagnosis of AIDS virus-mutated DNA by a re-
combinant DNA technology called Polymerase Chain Reaction (PCR). In the test results, the hybrid
architecture was able to select the leaders of image clustering, and the system is currently evaluated
under practical medical conditions.
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Figure 3.2 - Architecture of the Scheduler for the FMS
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3.2.3 Flexible Manufacturing Systems - Rabelo, et al. (1990)

According to the authors' definition, flexible manufacturing systems (FMS) are automated man-
ufacturing systems consisting of numerical control, machine tools, material handling devices, auto-
mated inspection stations, in-process storage areas, and a computational scheme to provide database
handling, supervisory, and monitoring functions. A hybrid system that integrates neural networks and
KBES is proposed to solve the real time scheduling of a flexible manufacturing system. Feedforward
neural networks are used as prediction tools and scheduling pattern recognition mechanism, and
KBES are utilized as the higher order members that interact with other elements of the FMS hierarchy
providing guidance for problem solving strategy, monitoring the performance of the system, and auto-
mating the neural networks learning process. The architecture of the system are schematically shown
in Fig. 3.2.

It appears that the architecture proposed in the article has direct applicability to scheduling and
planning problems in construction engineering. The question is how effective the learning units will be
on large complex data sets and how efficient the interfaces between expert system and neural networks
are in real application.

3.2.4 Task of Ordering - Becker and Penj (1987)

This paper discusses the use of activation networks for analogical reasoning in the task of ordering
the alternatives. The scheme for integrating the activation networks with a KBES for symbolic pro-
cessing is also outlined. The activation network is designed to represent analogical reasoning for prob-
lem solving. There are three layeis of nodes in the network and the characteristics of each layer are as
follows: 1) the input layer represents problem attributes, 2) the hidden or middle layer represents old
solutions, and 3) the output layer represents choice alternatives. Connections and connection strength
between input node to hidden nodes are established if the input attribute contributes to the solutions
in the hidden layer, and the connection strengths between the hidden layer to the output layer are
assigned identity values. Learning schemes such as the parameter-adjusting learning can be used to

Information about
~problem attributes

A Order for considering Expert System
Activation alternatives for SymbolicN Processing

Information on acceptability

of alternatives

Figure 3.3 - The Integration of an Activation Network with KBES
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adjust the weight between input and hidden layer. No learning example is shown in the paper. The

integration of an activation network with an expert system can be schematically shown in Fig. 3.3.

3.2.5 Delivery Truck Dispatching - Bigus and Goosbey (1990)

This article describes the application of a self-organizing network with database and knowledge-
based systems to solve the problem of dispatching delivery trucks under weight and volume con-
straints to minimize the number of trucks required and the total distance each truck must travel. The
problem solving process involves four steps: 1) reading the data from a customer and delivery database
and determining the minimum number of trucks required from Knowledgelbol - a rule-based expert
system, 2) using KnowledgeTool rules for the initial assignment of deliveries to trucks, 3) using Know-
ledgeTool to improve the assignments by swapping deliveries between trucks to reduce the travelling
distance, and 4) solving each truck's delivery route using a variation of elastic net proposed by Ange-
niol, et al. (1988) based on feature maps. The problem solving process is shown in Fig. 3.4.

3.2.6 Object Recognition in Image Processing - Glover, et al. (1990)

This article describes a hybrid system for object recognition in image processing. The system
which is composed of neural networks and a rule-based pattern recognition system, is capable of self-
modification or learning through a feedback loop between the neural networks and the rule-based
system. Thus the neural networks can be automatically trained and modified by the rule-based sys-
tem, and the rule-based system can modify models in this knowledge base from information supplied
by the neural networks. The schematic diagram of the hybrid system architecture is shown in Fig. 3.5.
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Get Consumer and Number of Trucks
Delivery Information and Initial Assignment Mopping

VUp
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Figure 3.4 - The Solution Process for the Truck Dispatching Problem
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Figure 3.5 - The Architecture of the Hybrid System for Object Recognition

3.2.7 Manipulator Control System - Handelman, Lane and Gelgand (1990)

This article describes a hybrid system combining neural networks and rule-based systems for ro-
bot control problems. Like the system proposed by Glover, et al. (1990), the rule-based system inter-
acts with and monitors the learning and performance of the neural network module. The training of
the network can then be completed on line so an autonomous learning system is defined. The system
works in the foilowing way: 1) Initially, a rule-based system is used to come up with acceptable first-cut
solutions to the given control objectives, 2) The rule-based system then teaches a neural network how
to accomplish parts of the learning task, and 3) After that, the rule-based system interacts with, moni-
tors the neural network operation, and re-engages task execution and training rules whenever changes
in operating conditions degrade network performance. The schematic architecture of the control sys-
tem for teaching a two-link manipulator to make a tennis-like swing is shown in Fig. 3.6.

3.2.8 Waste Water Treatment Sequence Processing - Krovvidy and Wee (1990)

This article describes a system for constructing waste water treatment sequences for the treatment
of several compounds by reducing the concentration levels of the chemicals. The objective of the work
is to extract the information from an existing database in the form of a collection of expert system rules
and use these rules to come up with the treatment train. The system consists of two phases: the analysis
phase and synthesis phase. The expert system rules obtained in the analysis phase are developed using
an inductive algorithm and the treatment train is determined in the synthesis phase using a Hopfield
network. The system is schematically shown in Fig. 3.7.
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3.2.9 Synthetic Organic Chemistry - Luce and Govind (1990)

Ibis system can be called a hybrid system but not in the sense used here, because it is basically a
compound system with several neural networks carrying out different operations. What we are really
looking at the hybrid system for is the integration of neural networks with knowledge based or tradi-

tional systems instead of simply putting some neural networks (may be of different ty-,2s) bundled

se>i Learning System [

Anayis Pase

Sequence of Process Sequencer
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Figure 3.7 - Architecture of the Process Sequencer for Waste Water Treatment
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together, though such bundled systems are also of significance in neural network research and applica-
tions.

In this paper, different neural networks are designed for the pattern recognition of molecular sub-
groups in organic molecules in producing and devising creative syntheses, and each network recog-
nizes one set of disconnection type. The bundled system design was inspired by Minsky's "society of
mind." The system design is shown in Fig. 3.8.

3.2.10 Fault Diagnosis - Yamamoto and Venkatasubramanian (1990)

This article proposed a novel approach to the fault diagnostics problems especially with multiple
faults. The conventional neural network approach to fault diagnosis solely uses the feedforward map-
pings in an open loop, whereas the approach proposed here consists of two mapping operations,
namely, feedforward mapping and inverse mapping. The inverse mapping networks give verification
to the results, provide credibility to the output values of the forward mapping networks, and rcduce the
ambiguity in generalization. The system consists of three main components: quantitative neural net-
works (QTN), qualitative neural networks (QLN), and inverse qualitative neural networks (IQLN).
Each module is also comprised of multiple networks with the same structure, and there are eight sub-
networks in QTN, five in both QLN and IQLN, respectively. All three networks are feedforward back-
propagation networks with one hidden layer. The general architecture of the system is shown in Fig.
3.9.

The performance of the system was evaluated through testing on the following four fault cases in a
chemical plant model: 1) single-fault cases, 2) two-fault cases I, where one fault resides in the reactor
and another in the distillation column, 3) two-fault cases II, where both faults are within the reactor,
and 4) sensor fault cases. The performance of the system is reasonable in that it identified all the novel
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Figure 3.8 - System Design for Retrosynthetic Analysis in Synthetic Organic Chemistry
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Figure 3.9 - System Design for Fault Diagnosis of a Chemical Plant Model

testing single-fault cases, two-fault cases I, and the sensor-fault cases. For two-fault cases II, half of
the test patterns were correctly identified.
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3.2.11 Other Applications

There are many other applications that use a hybrid system in the problem solving process. Hy-
brid systems have been proposed and used for many suitable problems in practice, such as the moni-
toring and diagnostics, process control and optimization.

For diagnostic problems, Casselman and Acres (1990) use several neural networks in a large diag-
nostic system - the DASA/LARS, on monitoring and diagnosing spectrum anomalies associated with
the Frequency Multiple Access satellite communication networks. The Neural Networks are trained
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on live sensor information in an operational environment. For medical diagnostics, Saito and Nakano
(1988) built a prototype medical diagnostic expert system based on a three layer backpropagation net-
work trained on symptoms and diagnosis cases of about 300 patients. The system maps headaches as
the only symptoms to 23 diseases. The input layer represents answers to each question of the 230 on a
questionnaire. A scheme is also proposed to extract symbolic knowledge from the diagnostic results of
the neural networks and compare with doctor's knowledge. In veterinary medicine, a system for diag-
nosis of mastitis in dairy cows is proposed by integrating a production system module, a neural net-
work simulation module and a knowledge acquisition module (Schreinemakers and Touretzky, 1990).
The production system is OPS5 and all three modules communicate via OPS5 working memory ele-
ments. The performance of the system on the diagnosis of mastitis in a limited set of experimental data
showed excellent accuracy. In engineering facility management, monitoring and diagnostics are an
integrated set. Toukalas and Reyes-Jimenes (1990) proposed a prototypic system for the monitoring
and diagnosis of a nuclear plant model. A backpropagation neural network with one hidden layer is
used to capture the correlation between sensor signals and the working state of different units. The
rule-based system is used to interpret the results from the neural nctwork and to make decisions and
control the operations of working units.

Tsutsumi (1989) has done a series of work in robot and position control. Though his system does
not fit in the pure mode of hybrid systems, his approach is worth mentioning. The article describes a
system consisting of two backpropagation networks and a Hopfield network for applications in ma-
nipulator control. The input signals from the environment are mapped via a backpropagation network
into the internal space, where a Hopfield net minimizes the total energy according to the internal space
representation. The output signals of the Hopfield Net are then mapped into the environment via
another backpropagation net with the inverse mapping. Simulation studies on manipulator configura-
tion control how the proposed system helps the manipulator to reach the target point through the
shortest path in the internal space. It should be pointed out that a similar approach on adding an
inverse mapping in the control loop was also proposed in Yamamoto and Venkatasubramanian's
study (1990) on a chemical plant ,;ontrol model.

Though the neural network approach ti- planning is discussed in another section in this chapter,
Veezhinathan and McCormick's work on plan reminding (1988) is interesting. As defined in the ar-
ticle, plan reminding is the process by which we are reminded of a plan or a set of plans to achieve a
given goal or a combination of goals by taking into account certain familiar constraints automatically.
The characteristics of plan reminding is as follows: 1) it is indexed not only by goals, but also depends
critically on the context in which the goals occur, 2) constraint satisfaction is an important consider-
ation, and 3) it may involve inference. This article describes a prototypic connectionist model for the
task of errand planing in plan reminding within a production system.
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3.2.12 Studies on Connectionist Expert Systems and Related Works

Some woi ks concerning the methodology in building connectionist expert systems and schemes for
rule extraction, concept mapping, generalization, etc., are also listed in the following references.

For example, Bochereau and Bourgine (1990) discussed the extraction of logical rules from a multi-
layer neural network through building a validity domain for the network. The work is of significance in
theoretical study in building real neural expert systems with explicit knowledge about the internal rea-
soning. However, its applicability is still an open question as no case studies were given in the article.
In Miller, Roysam and Smith's work (1988), a general method for mapping a large class of rule-based
constraints to their equivalent stochastic Gibbs' distribution representation was proposed. This map-
ping thus makes it feasible to solve stochastic estimation problems over rule-generated constraint
space within a Bayesian framework. The algorithm was also tested on a image reconstruction prob-
lem.

In addition to Gallant's (1988) seminal work on the construction of connectionist expert systems,
new schemes have also been proposed in that respect, such as the work by Yang and Bhargava (1990),
Touretzky, et al. (1986, 1987, 1990), Samad (1988) anc Fu (1989). Some works also cover the integration
of fuzzy logic with neural networks (Kosko, 1987; Romaniuk and Hall, 1990).
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3.3 Civil Engineering Applications

The application of neural networks in civil engineering ranges from modeling of material behav-
iors from experimental tests, damage assessment of structural systems, structural analysis and opti-
mum design, to ground water modeling. Research works in this area are still exploratory and the ques-
tion is on: 1) the definition of the specific application domains, namely, in what subdiscipline or sub-
area neural networks would most probably provide advantage and benefits over the current approach?
2) what kind of network is most suitable for problems in civil engineering? The examples shown in the
following paragraphs will provide some test cases for judging the pros and cons for neural network
approaches in this field.

3.3.1 Modeling of the Behaviors of Engineering Materials

The application of neural networks to material modeling was initiated in the Department of Civil
Engineering at the University of Illinois. The focus of this research group is on the modeling of behav-
iors of engineering materials such as concrete, reinforced concrete, geo-materials, as well as compos-
ites, the assessment of structural member damage in a structural system, and the classification of
groundwater transmissivity fields for use in the design of groundwater contamination remediation. In
material modeling, the behavior of a material under different stress states determined from experi-
ments is represented as a kind of knowledge in a neural network.

- 80 -



The paper published in the Proceedings of NUMETA-90 (Ghaboussi, et al. 1990) described a neu-
ral network approach to the modeling of engineering material, specifically plain concrete. The com-
plex behavior of concrete material in biaxial stress states under tension-tension, tension-compression
and compression-compression monotonic loading was modeled by a backpropagation neural net-
works with two hidden layers. The neural network-based model is stress controlled, that is, it predicts
strain increments from information on the current stress-strain states and stress increments on a
stress path. The neural network concrete model learned the behavior with reasonable accuracy and its
predictions on untrained stress paths were on par with those predicted from analytical models.

The article in the ASCE journal (Ghaboussi, et al. 1991) formally proposed a neural network-
based material modeling methodology for engineering materials with complex mechanical behavior.
Behaviors of plain concrete in biaxial stress states under monotonic loading and those in uniaxial
stress state under cyclic compressive loading were modeled in backpropagation neural networks. A
"3-point scheme" was used to represent the history dependency of material behavior under cyclic
loading. Comprehensive testing has been carried out to verify the neural network-based models with
additional experiments and analytic models based on principles of solid mechanics. Implication of the
network-based modeling methodology to the difficult problem of composite material modeling was
also outlined.

References

1. Garrett, Jr., J. H., Ghaboussi, J., and Wu, X., "Neural Networks," a chapter in Expert Systems in
Civil Engineering- Knowledge Representation, R. H. Allen, Ed., The Expert System Committee of
the American Society of Civil Engineers, 1991.

2. Ghaboussi, J., Garrett, Jr., J. H., and Wu, X., "Material Modelling with Neural Networks," NU-
META-90: Proceedings of the International Conference on Numerical Methods in Engineering:
Theory and Applications, Swansea, U. K., January 1990, pp. 701-717.

3. Ghaboussi, J., Garrett, Jr., J. H., and Wu, X., "Knowledge-Based Approach to Material Model-
ling with Neural Networks," in J. of Engineering Mechanics, American Society of Civil Engineers
(ASCE), January 1991.

4. Wu, X., Garrett, Jr., J. H., and Ghaboussi, J., "Representation of Material Behavior: Neural Net-
work-Based Models," Proceedings of the International Joint Conference on Neural Networks, San
Diego, June 17-21, 1990.

3.3.2 Structural Analysis and Design

3.3.2.1 Deb's Approach (1990)

The design of a welded beam involves the determination of a feasible set of geometrical parameters
for the weld and the beam under a concentrated load at the free end, which the system subjects to
constraints on the shear stress in the weld, bending stress in the beam, buckling loading, beam end
displacement, and the width of the weld. Genetic Algorithms (GAs) are used to solve the problem with
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four design parameter And five sets of constraints. Performances of GAs with three population sizes
(100, 50,200) and corr. .ponding probabilities of crossover and mutation are compared with tradition-
al optimization method. The final results are very reasonable and the maximum error for the popula-
tion of 100 case is about 3 percent.

The parameters used in the GA are: population size (100, 50, 200), string length (40), sub-string
length for each parameter (10), probability of cross over (0.9, 0.5-1.0), and probability of mutation
(reciprocal of the population size). Because a GA only needs to search for an optimal solution in a
subspace of the feasible space, GAs look very promising in structural optimization problems. On the
other hand, a genetic search procedure is implicitly parallel and thus provides fast searching capabili-
ties especially on parallel machines.

3.3.2.2 Hajela and Berke's Approach (1990)

In structural design, major computation is on the analysis of the structural behavior with different
sets of design parameters under designated loading. In this paper, neural network models are used to
replace the structural analysis module in a nonlinear-programming-based cptimization environment.
The feedforward backpropagation network and the functional-link net were used to capture the load-
displacement relationships in static structural analysis in the minimum weight design of a five-bar
truss, a ten-bar truss, a wing-box structure, with constant nodal loading and constraints on maximum
nodal displacements or axial stresses or both.

From network performance study, it was found that the functional-link net was not very effective in
highly nonlinear mapping of the load-displacement relation. The identification of proper input en-
hancement would be the key for the success of functional-link net, and this task is not easy to achieve.
There were 16 design variables and 40 design constraints on both displacements and stresses for the
wing-box structure, and the training sets covered possible lower and upper bounds of each design vari-
able. For each design case, each input node represents a design variable (cross-sectional area) and
each output node represents a nodal displacement. It appeared that the neural networks achieved the
near-optimum design for each structure.

In our opinion, the advantage of this approach is the fast mapping of load-displacement relation
after training. The pitfall lies in the following aspects: 1) the structural geometry is fixed, i.e., there
needs be a neural networks for each structural configuration, and 2) a large number of :raining sets are
needed to cover the lower and upper bounds for each design variables. For large real structures, it
would be too expensive to generate all the training data. A comparison with genetic algorithms may
shed some light on this problem because only a small subspace of the training domain is needed with
genetic searching algorithms (Goldberg, 1989).

3.3.2.3 Mcaulay's Approach (1987)

This paper also addressed the application of a backpropagation network in structural design and a
new learning algorithm called "split inversion learning." The basic approach of this algorithm is to
compute the weights for the output and hidden layers separately so that the error at the output layer is
minimized. In structural design, an inverse problem to structural analysis is solved by a backpropaga-

- 82 -



tion network to model the displacement-load relation under varying magnitudes of loadings. For a

static linear beam-truss problem, the loads and controlling displacements are represented as input

information, and the design variables such as the dimension of each structural member as output in-
formation. No numerical solution was shown in the paper.

Further study needs to be done on the proposed new learning algorithm before it becomes a viable
one. As discussed, only if the number of data sets is equal to the dimension of the output layer, can the
update of weights be obtained from solving a linear system of equations. In this case, two systems of
linear equations corresponding to that from input layer to output layer and that from hidden layer to
output, need to be solved. If the condition is not satisfied, or if the number of training sets is larger than
the dimension of the output layer, which is the usual case in practice, then a linear squares problem
must be solved instead. This made the learning algorithm awkward and inefficient. On the other hand,
the remarks suggesting the conjugate gradient method for the ill-conditioned linear system of equa-
tions were misleading because conjugate gradient even with simple preconditioner is also ineffective
for those highly ill-conditioned systems.

3.3.2.4 Rehak, Thewalt, and Doo's Approach (1989)

This paper is probably the first one addressing the application of neural networks to structural
mechanics in civil engineering. By considering its summation rules for a neuron in a neural network, a
neural model of spring structure is construed as computational elements in structural mechanics, and
its use in system identification computation for a dynamic system, specifically a one degree of freedom
oscillator with viscous damping, was illustrated. Since this approach was basically drawn from the
analogy of mapping properties associated with linear neural networks and the solution procedure in
linear systems, the applicability of the approach is limited and does not offer any improvement on the
current approach to structural system analysis. In spite of this, the major contribution of this paper
lies in its realization of possible impacts of neural networks to system identification computation,
which is also of significance in active structural control and structural dynamics.

From critically reviewing this article, one should recognize the limited scope of application of neu-
ral networks, that is, neural networks should be used in those areas where they have the potential of
resulting in better performance and improvement over the currently used methodologies. This aspect
needs innovative thinking and critical reasoning.
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3.3.3 Structural Damage Assessment and Fatigue Prediction

3.3.3.1 Garrett, et al. (1990)

The paper by Garrett, et al., is essentially a conglomerate of term project reports produced from
Professor Garrett's class in the Department of Civil Engineering at the University of Illinois. It ad-
dresses the following prototypic engineering applications of neural computing: 1) an adaptive control-
ler for building thermal mass storage, 2) an adaptive controller for adjustment of a combine harvester,
3) an interpretation system for non-destructive testing data on masonry walls for damage detection, 4)
a machining feature recognition system in process planning, 5) an image processor for classifying land
features from satellite images, and 6) a system for designing pumping strategy for contaminated
groundwater remediation. Backpropagation networks were used in the first five applications and the
Hopfield network was used for the last application. Ail the results reported in this paper are explorato-
y and preliminary, and further success rests on intensive work in those directions.

3.3.3.2 Troudet and Merrill (1990)

This paper described a neural network approach to estimate in real-time the fatigue life of me-
chanical components in the Intelligent Control Systems (ICS) for Reusable Rocket Engines (RRE) at
the NASA Lewis Research Center. This fatigue life estimator consists of two functional blocks: a pre-
processor and a neural network. The function of the preprocessor is to identify a load cycle and store
the cxtrcmc load values in a shift-register buffer, which is then directly mapped to the input layer of a
backpropagation neural network. The identification of a load cycle is based on the Uniaxial Local
Strain Approach (Dowling, 1972; Palmgren, 1945; and Miner, 1945).

The architecture of the backpropagation network consists of 15 nodes in the input layer, 100 and 50
nodes in the first and second hidden layers respectivtly, and one node in the output layer. The input
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nodes represent the content of the shift-register consisting of the load cycle boundaries and the peak-
to-peak transitions of the previous cycle-free load history, and the output represents the contribution
to the fatigue life of a hystere--is loop. The performance of the network based fatigue estimator is
reasonable with 75 percent of the estimated values within a factor 1.7 of the exact data. No figures in
the article showed the training and testing results.

3.3.3.3 Wu, Ghaboussi, and Garrett (1991)

A neural network approach has been proposed to the assessment of structural elements damage in
a structural system from classifying deviations in the system behavior. From structural mechanics, it is
realized that the response spectrum of a damaged structure in the frequency domain would differ by
certain amount from that of the intact structure. Therefore, the damage of a structural system can be
identified by a neural network if the network is trained on the response spectra corresponding to dif-
ferent damage states. A three story shear building was used in this study.

The approach has three computational steps: 1) the response of the structure under seismic excita-
tion was determined in the time domain, 2) this response is then transformed into a response spectrum
in the frequency domain through Fast Fourier Transformation (FF), and 3) the normalized spectrum
is then used for training a backpropagation network. Different architectures with one or two hidden
layer(s) have been investigated, and it was found that the architecture had little effect on the perform-
ance of the trained network. The training results were perfect, and the test results on untrained cases
were reasonable. Extended work is on the damage assessment of framed structural systems such as an
offshore oil tower.
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3.3.4 Groundwater Remediation

Several applications of neural networks in groundwater remediation are currently being investi-
gated at the Department of Ci'vil Engineering at the University of Illinois, using multilayer feedforward
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and Hopfield type networks. They considered a hydraulic gradient control technique to determine the
optimal pumping strategy for groundwater remediation under conditions of uncertainty. Their design
method adopted a stochastic approach, where many equally likely sets of the uncertain parameter are
included simultaneously in the design model. The major source of uncertainty is assumed to be em-
bedded in the heterogeneity of the hydraulic conductivity parameter. Although many parameter fields
are considered, only a few critical fields will impact the fi.:al design. The spatial distribution of the
hydraulic conductivity values in a hydraulic conductivity field determines how critical that field is. The
first application of a neural network was to train a feed-forward type network to learn, via error back-
propagation, the association between a hydraulic conductivity field and its impact on the design. This
network then classifies a large set of hydraulic conductivity fields according to their level of critical-
ness. Promising results have been obtained in this area of application. The trained neural network will
be used as a prescreening tool, looking for the critical hydraulic conductivity fields, in the groundwater
remediation design procedure. The pumping strategy for hydraulic gradient control is determined by
solving an optimization model. The second application of the neural network was to set up a Hopfield
style network to solve the optimization model through simultaneous constraint satisfaction. This ap-
proach enables the solution to optimization models with three components of pumping cost: cost of
installation, cost of pump machinery, and cost of pump operation. Traditional linear programming
techniques could run into computational complexities in this case. The preliminary results show that
the neural network approach to optimization has the capability to converge to solutions that are opti-
mal or near-optimal.
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3.4 System Identification

In engineering applications, a vital part of analysis is to model and estimate the behavior of a sys-
tem from observations on input-output information. There are usually two steps in the estimation of a
system behavior: functional estimation and parameter estimation. In a conventional sense, system
identification is concerned with the determination of the parameters of a system after assuming a sys-
tem function with unknown parameters is known. According to Zadeh (1962), the system identifica-
tion problems can be defined as "the determination, on the basis of input and output, of a system with a
specified class of systems, to which the systems under test is equivalent."

There are many ways to represent a system identification problem. In electrical control engineer-
ing, the early approach to system identification was concerned with the determination of the transfer
function of a system. The transfer function could be determined by applying a known input signal to
an assumed system, measuring the response of the system, and fine tuning the system parameters until
the expected response was produced. This kind of approach is unsuitable for nonlinear systems or
systems with measurement and process noises. Though the system parameters for a linear system can
be determined in one step by solving a least squares problem, the determination of system parameters
for a nonlinear system is an iterative process. A general form to represent both linear and nonlinear
systems is the Kolmogorov-Garbor polynomial (Garbor, et al., 1961).

Neural networks with supervised learning, such as backpropagation networks, have been investi-
gated for solving system identification problems because of the functional mapping capability of feed-
forward networks (Hornik, et al., 1989). It has been observed through experiments with the modeling
and prediction of chaotic time varying systems that a feedback mechanism is necessary to identify a
system with dynamic response. Details of this argument are illustrated in research described in this
section. In other respects, the unique feature of neural network--based system identification method-
ology should be reiterated. Instead of obtaining explicit expressions about the system functions and
corresponding parameters, a neural network solves a system identification problem through training
on the input-output data sets observed. The underlying function and parameters of a system identified
by a neural network are embodied in the network in a pattern of connection weights after proper train-
ing. In the following paragraphs, some of the typical approaches to system identification using neural
networks are described.

3.4.1 Lapedes and Farber (1987)

This paper has probably become the classic in the neural network approach to prediction and
system modeling. A standard three layer backpropagation neural network with one hidden layer is
used to predict points in a highly chaotic time series by using a time window representation scheme.
Three previous points on the time coordinate are presented to the input layer and response on the next
time station is used as output in the output layer for prediction. For this problem, performance of the
neural network is better than some conventional methods (such as the linear predictive method) in that
the former gives orders of magnitude an increase in accuracy. An interesting experiment was also
performed to study the underlining approximation capability of the network by using trigonometric
sinusoid instead of the usual sigmoid function for the transfer function so that a generalized Fourier
approximation resulted from the network.
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3.4.2 Tenorio and Lee (1989)

ITnorio and Lee designed their Self-Organizing Neural Network (SONN) algorithm specifically
for system identification problems by approximating function and functional parameters estimation
in a unified process. The algorithm performs a search on the model space by the construction of hyper-
surfaces so the identification of a nonlinear system is viewed as the construction of an N + 1 dim .nsion
hypersurface when the system is represented by a Kolmogorov-Garbor polynomial with the highest
order of N. The architecture of the network evolves while training takes place. The SONN consists of
three processes: 1) a generating rule of the primitive neuron transfer functions, 2) an evaluation meth-
od which measures the quality of the model, and 3) a structure search strategy for adjusting the archi-
tecture of the network. When tested on modeling, the chaotic time series generated from the Mackey-
Glass differential equations, SONN gives a satisfactory performance compared with Lapedes and
Farber's work (1987).

3.4.3 Fernandez, Parlos and Tsai (1990)

This article describes a recurrent multi-layer perceptron network and its use in the identification
of nonlinear dynamic systems based on input-output measurements. Feedback connections between
layers and intralayer recurrent connections are introduced in the network, and the learning algorithm
is a modified version of backpropagation learning rule. Using the network based system for the identi-
fication of a boiler model was satisfactory, yet perceivable training errors existed. The architecture of
the neural network is shown in Fig. 3.10.

Hidden Layer

Input Layer i Output Layer

Figure 3.10 - Architecture of the Recurrent Neural Network

3.4.4 Haesloop and Holt (1990)

This article describes a Direct Linear Feedthrough Structure (DLF), a variation on the back-
propagation network by adding direct connections from input layer to output layer and the application
of this architecture on the process identification problem. In a three layer backpropagation network
with one hidden layer, the connections from input layer to output layer represent a linear system,
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whereas the remaining network models the nonlinear dynamics in the system. The general architec-
ture is shown in Fig. 3.11.

The computational properties of the network are tested on the process identification of a surge
tank that has a stream flowing into it at an independently determined rate and flowing out of the tank
at a rate proportional to the square root of the height of fluid in the tank. When trained on the whole
set of data, the DLF results in better learning accuracy and shorter learning time than the standard
backpropagation network. The DLF architecture is also compared with a standard backpropagation
network on the generalization capability by training on a training subset and testing on the remaining
set of data. The DLF architecture shows better accuracy and extrapolation capability on the testing
cases.

Hidden Layer

Input Layer Output Layer

Figure 3.11 - Architecture of the Neural Network with Direct Linear Feedthrough

3.4.5 Hakim, et al. (1990)

Feedback mechanism is a necessity in building a neural network system with dynamir behavior. In
nonlinear signal processing and time series prediction, dynamic recurrent network models would be
better suited for studying chaotic and nonstationary time series. A new neural network architecture is
proposed in this article to solve the system identification problem by introducing recurrent mecha-
nism into the network through clustering and interconnections between nodes among different clus-
ters in the hidden layer. TWo neuron models, the classical neuron with graded response used by Hop-
field and Ihnk, as well as a discrete-time model, are studied in detal. The parameters used for solving
a system identification problem consist of the weight matrix of the middle neuron layer, the input and
output connection matrices, the size and topology of the interconnection neighborhood, the neurons'
time constants, and the shape of the nonlinearities. The architecture of the network is shown in Fig.
3.12.

The performance of the network is remarkable on two benchmark problems: the prediction of the
logistic function with chaotic behavior and building a neural network Frequency Shift Keying (FSK)
demodalator. Be-haviors of the time parameters and the number of neurons in the middle layer are
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Figure 3.12 - Architecture of the Neural Network for System Identification

also investigated. One advantage of this architecture is that it can handle information from multi-
channel measurements of the system.

3.4.6 Nishimura and Arai (1990)

This article describes a structured neural network and its application to power system state evalu-
ation for proper power system control and operation (Fig. 3.13). The voltage measurement at differenm
nodes of the power system is used to identify patterns of system performance. The new architecture
consists of an input layer, a receptive layer, an associative layer, logic units and feedback mechanism
as shown in Fig. 3.14. The network is constructed by wiring instead of learning, and tb* modeling and
interpolation capability of the network is provided by the selective activation coefficients and the rela-
tive contribution coefficients.

The composition of each layer in the structured network is as follows. The input layer serves as the
usual input terminals; the receptive layer is composed of several receptive strips that correspond to
subpatterns in the input data; the associative layer integrates the outputs of the receptive layer; and the
logic units process the information on the associative layer and generate the final output. The feed-
back mechanism changes the selective activation coefficients and the relative contribution coefficients
according to some outputs of logic units, which also provides a deeper reasoning capability than a
backpropagation network. The proposed network works very well on power system models.

3.4.7 Narendra and Parthasarathy (1990)

This article describes the application of neural networks in the identification and control of non-
linear dynamical systems. Multilayer backpropagation neural networks and recurrent networks are
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Figure 3.13 - Problem of Power System State Evaluation

treated in a unified fashion. Schemes for static and dynamic adjustment of parameters of neural net-
works are also proposed. Processes for direct adaptive control and indirect adaptive control of non-
linear systems using neural networks are presented with satisfactory simulation results.

Our coverage on the application of neural networks to system identification only provides a
glimpse of this field due to time and space limitation. It is also of interest to notice that system identifi-
cation via neural networks has not been seriously addressed for structural systems in civil engineering
except by the short remarks made by Rehak, et al. (1989). Research will be excellent in this area and
important in providing robust tools and insight for structural system analysis.

O10 0 0 0 0 0 0 0 Output Layer

Logic Units 0"_J Relative Contribution 0
0O 000 Coefficients

Associative Layer 0 0 0 0 Feedback
O O OMechanism000 ~Selective ActivationMehns
Coefficients

Receptive Layer

0000 60 00 0 Input Layer

Figure 3.14 - Architecture of the Structured Neural Network
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3.5 Forecasting and Prediction

From the history of development in scientific research, it could not be over-emphasized that one of
the central problems of science is to discover the underlying laws of the universe so that not only a
natural phenomenon can be understood but also its future can be forecasted or predicted. It is also
interesting to realize that the ability to give proper prediction bears a close tie with the quality of life, as
are exemplified in weather forecasting and economic planning.

As pointed out by Weigent, et al. (1990), two types of knowledge are required in order to forecast
the behavior of a natural system, namely, knowledge of the underlying laws and discovery of strong
empirical regularities in observations of the system. Therefore, for the former, the prediction problem
functions like an initial value problem which is fully determined by the differential equation and its
initial conditions; for the latter, the behavior of the system is represented by its periodicity whether the
periodicity is apparent or masked by noises. In other words, the system should be properly identified
first. It is thus natural that system identification is the overture in producing the outcome of forecast-
ing. Traditional prediction uses statistical methods such as curve fitting and regression analysis. Neu-
ral networks, due to their learning capability and intrinsic statistical characteristics, provide a poten-
tial tool and modeling methodology in this vital area of scientific endeavor.

Real world prediction problems range from bond rating (Dutta and Shekhar, 1988) and power
system load forecasting (Atlas, et al., 1990) to sunspot activity, have been investigated by researchers
from different disciplines. Due to their intrinsic properties, forecasting for problem domains with
underlying principles or having well defined models is easier to model than that for nonconservative
domains in which no well defined models exist. In the following paragraphs, some of the studies in this
direction are described.

3.5.1 F rmer and Sidorowich (1987)

Though this article does not address the application of a neural network to prediction, it does
influence the thinking and benchmark construction on neural network based prediction models. The
article describes a forecasting technique specifically designed for chaotic data by embedding a time
series in a state space using delay coordinates and modeling the nonlinear mapping using local approx-
imation. The local approximation approach performs significantly better than the global approxima-
tion method introduced by Gabor, et al. (1960) and autoregressive models, on modeling the logistic
map, the Mackey-Glass delay-differential equation, Thylor-Couette flow, and Rayleigh-Benard con-
vection.

3.5.2 Dutta and Shekhar (1988)

This article describes the application of neural networks to the prediction of the ratings of corpo-
rate bonds, which belongs to the nonconservative problem domains where a domain model or theory is
not well defined. For this problem, conventional mathematical modeling techniques such as statistical
regression models have yielded poor results and it is difficult to build rule-based expert systems.
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Feedforward networks with two and three layers were used i. this study. Ten variables were se-
lected as input units and the output unit represents the rating of the bond. Bond ratings and values of
the financial variables for a set of industrial bonds issued by 47 companies were chosen at random as
the data set and 30 of them were used for training and the remaining data for testing. The neural
network-based models were compared with standard regression models on the accuracy of classifica-
tion on each bond. To determine the minimal set of influential variables, six financial variables were
also used for training and testing. The reported results indicate that neural network-based models
outperformed the regression model by a considerable margin on both learned (92.3 vs. 61.5 percent)
and testing cases (83.3 vs. 50 percent), and the three layer network gives best learning results. On the
testing cases, the performance of two layer network is the same as the three layer network (83.3 per-
cent). The reason is that the selected ten input financial features of a bond are relatively high level
abstractions. On the other hand, the learning results with tea input variables give better performance
than that with six input variables. One interesting result is !bat, on misclassified cases, the network
prediction has at most one grade difference, whereas the regression model is often off by several rat-
ings.

The success of the neural network-based models rests on the in-depth understanding of the prob-
lem and correct judgement on selecting the representing financial variables by the modelers. This in
turn indicates the importance of the derivation of a good representation scheme.

3.5.3 Fozzard, Bradshaw, and Ceci (1989)

This article describes an application of a backpropagation network for daily solar flare forecasting
and comparison of the network prediction with a rule-based - .ert system. An interesting feature of
the approach is that it uses the identical representation svine a. used for the rule-based system. The
architecture of the network is shown in Fig. 3.15. The 3 output units represent the 3 classes of solar
flares to be forecasted, and the 17 input units provide a distributed coding of the 10 categories of input
data that are used for the expert system. The network is trained and tested with data from the database
of the expert system, and the performance of the network is at least as good as ti.:, exp ert system.

It should be pointed out that the netwoi: was only tested on a small segment of the 11-year solar
cycle and no other representation scheme was investigated for the generalization analysis. However,
this preliminary study does show the promise of neural networks in the field of forecasting where no
underlying physical principle seems apparent at the moment.

3.5.4 ,Sharda and Patil (1990)

This article reports a comparative study of the forecasting capability of neural networks with con-
ventional models based on Box-Jenkins Methods. A backpropagation network with similar architec-
ture to NETtalk (Sejnowski and Rosenberg, 1986) is used to model the time series via time windows.
The simulation results showed that both neural network models and conventional models performed
equally well on the simulation problem so that neural networks can actually be used as a forecasting
tool. The advantage of using neural networks is that it is a very simple model and is easy to build.
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M X 3 Output Unit (flare probability)
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17 Input Units
(10 categories of input solar data)

Figure 3.15 - Architecture of the Neural Network for Prediction

3.5.5 Walter, Ritter and Schulten (1990)

This article describes a new approach to the prediction of non-linear time seqdence data, namely,
the prediction of 3-D motion of an object in a set of nonlinear potentials of different orders of nonlin-
earity. The main idea is to use a Kohonen network to adaptively discretize the set of the input data, and
to estimate in each discretization cell a separate set of linear prediction coefficients. A lattice with
12x12 neurons is used in this study. The network is trained with a series of trajectories with randomly
chosen starting values and reasonable performance is obtained.

The unique feature of this approach is the use of a Kohonen network instead of the usual feedfor-
ward type network. It would be of interest in the field of prediction if an integrated system could be
built with features from feedforward networks and self-organizing networks.

3.5.6 Weigend, Huberman and Rumelhart (1990)

This report describes the extension of feedforward networks utilized by Lapedes and Farber (1987)
to predict future values of possibly noisy time series by extracting knowledge from the past. A three
layer backpropagation network with one hidden layer (shown in Fig. 3.16) and its variation through a
weight-elimination scheme and a time window representation scheme are used in modeling the behav-
ior of the time varying system. The weight-elimination scheme is derived from a more complex cost
function than the usual squared error cost function in that a cost measurement associated with each
connection weight in the network is included. The issues of over-fitting and generalization capability
while training a large network, and sigmoidal transfer function vs. radial basis functions, are analyzed
numerically in the system training process. It was found that a densely trained network via weight-eli-
mination scheme illustrated better generalization capability than sparse networks.

Two benchmark problems in statistics were tested on the forecasting capability of neural networks,
namely, the sunspot activity prediction and the modeling of computational ecosystems. For the sun-
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Figure 3.16 - Architecture of the Neural Network for Prediction

spot problem, the neural network model outperformed the threshold autoregressive model by Tong
and Lim (1980), which is considered the best statistical model to date. For the prediction in a computa-
tional ecosystem, a time series for the use of resources is trained with a three layer backpropagation
network with one hidden layer. Single and multi-step predictions of the ecosystem show good agree-
ment between data and forecasting values. The eventual forecasting function after several million iter-
ations exhibited a very similar frequency spectrum to the original data.

3.5.7 Werbos (1988)

It is perhaps fair to say that Werbos is one of the first fewwho applied neural networks to real world
problems. This article describes a generalization of dynamic feedback in the backpropagation net-
work to deal with recursive time-dependent networks anc to use it in prediction, optimization over
time and the analysis of the properties of a natural gas market model which has been used in a major
study of natural gas deregulation.

3.5.8 White (1988)

This article describes the application of neural networks to an enticing field - stock market predic-
tion. The objective of the work is to determine whether a neural network can decode previously unde-
tected regularities in asset price m w.r ,tts, such as the daily fluctuations of common stock price,
using the case of IBM daily comnon scock returns as an example. A sample of 1000 days of data were
selected out of the available 5000 d?.,. of return data as a training set, togetherwith samples of 500 days
before and after the tiaining period as testing cases. A three layer backpropagation network with one
hidden layer is used in this study. Though results from this endeavor were not satisfactory, some valu-
able insights are worth mentioning: 1) modeling this highly nonconservative problem system is not easy
with simple networks, 2) the simple network has the tendency to over-fit the price time series, and 3) the
simple network is capable of extremely rich dynamic behavior.
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3.6 Control

In the control of a dynamic system, there usually exist two processes, namely, the learning or identi-
fication of the system and the extraction and enforcement of control signals. Control theory is a very
well defined domain with much literature, and many learning methods used in neural network learning
are closely related to methods that have been intensively studied in adaptive control theory. On the
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other hand, because of the way a neural network operates and performs, the neural network based
control has special characteristics that lack in traditional control theory. It has been illustrated in

previous sections that neural networks are powerful tools in capturing the characteristi s of a system
through self-organization or learning. Because of this adaptive parameter estimation capability, neu-
ral . etworks are very well suited for application in engineering control.

To date, many kinds of neural networks have been studied for control applications. Like system
identification, systems consisting of supervised learning models have found the most extensive usage
in control. Backpropagation learning as well as reinforcement learning are considered to be the most
suitable learning algorithm. One of the advantages of using reinforcement learning is that the learning
process can be accomplished on-line. On the other hand, reinforcement learning provides flexibility in
extracting control signals because it addresses the problem of improving performance as evaluated by
any measure whose values can be supplied to the learning system (Barto, 1989)

The application of neural network-based control techniques has covered a broad range. Perhaps
the most noteworthy one is the trucker backer-upper and broom balancer problems solved by Wind-
rew and Nguyen (1987 and 1989). The majority of applications of neurocontrol are in all aspects of
robot control and manufacturing process control. The following list of references gives a sketchy pic-
ture of applications in this field.
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3.7 Diagnostics Systems

Fault diagnosis of a system, due to its relation with pattern x -cognition, is probably one of the most
suitable area for the application of neural networks. Many real world problems involve the use of
detection such as the diagnosis of disease from symptoms or the diagnosis of engine malfunction
through observation of engine behavior. The detection and diagnosis of faults can usually be pro-
cessed in two steps: the recognition of abnormality in the system and the identification of causes for the
abnormality or faults.

There are many approaches to the diagnosis of a system in general, such as the rule-based system,
simulation-based expert system and neural network-based system. Though rule-based systems have
been used successfully in many medical and engineering applications, the process of encoding knowl-
edge in rules and the knowledge acquisition process are complicated and not easily achieved in a short
time frame. For systems with the simulation of a physical system in the knowledge base, the simulation
process is computationally intensive and time consuming. Because of the slow response time pertain-
ing to an expert system-based approach to diagnosis, real-time application of those approa,.hes would
be too difficult to achieve. On the other hand, neural networks such as backpropagation networks,
after proper training, will provide nearly real-time response for a diagnosis system in real world appli-
cations and the system can be developed in a short time.

The architecture of neural network diagnosis systems has been investigated by many researchers
on different problems, and it can be of different forms which include the simple single backpropaga-
tion network, a hierarchy of different backpropagation networks such as that used in jet engine diagno-
sis (Dietz, et al., 1990), a hybrid system combining neural networks and rule-based systems (Tsoukalas
and Reyes-Jimenez, 1990; Saito and Nakano, 1988; Schreinemakers and Touretzky, 1990), and a system
incorporating supervised learning and self-organizing mechanisms, depending on the nature and
complexity of the problem.

The application of neural networks to diagnose problems ranges from medical diagnosis and fault
diagnosis in electrical systems to the maintenance and monitoring of chemical processes. In medically
related diagnosis, several diseases have been studied such as the diagnosis of epilepsy through symp-
toms in a computer aided medical diagnosis system (Appolloni, el al., 1990), the diagnosis of disease of
newborn babies through analysis of radiology images (Boone, et al., 1990), and the diagnosis of low
ba~ck pain (Bounds, et al., 1988). A hybrid expert system incorporating a neural network for medical
diagncsis has been proposed by Saito and Nakano (1988), and Schreinemakers and Touretzky (1990)
proposed the use of OPS5 functions for the construction of a hybrid system for diagnosing mastitis in
COWS.

Perhaps the most noteworthy application is the neural network-based explosive detection system
for safety checks at airports (Shea, Lin and Liu, 1989 and 1990). Dietz, et al. (1987, 1988 and 1989)
constructs a real-time diagnosis system for failuie detection in the bearings and the fuel system of ajet
engine, and also a space shuttle engine system based on the test data. Casselman and Acres (1990)
developed a comprehensive diagnosis system using several networks for the monitoring of a large sat-
ellite communication system. Neural networks have also found application in the fault diagnosis of
electronic circuit boards (Kagle, et al., 1990), the automatic control system (Marko, et al., 1990), the
operation of a nuclear plant model (Tsoukalas and Reyes-Jimenez, 1990), and in transportation engi-
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neering by processi..g radar waves for detecting the presence of a waterproofing membrane in an as-
phalt covered bridge deck (Vrchovnik, et al., 1990).

In the following paragraphs, several typical applications are described in detail and relevant refer-
ences are also provided.

3.7.1 Medical Applications

Appolloni, et al., (1990) describe an application in the diagnosis of epilepsy, a group of neurologi-
cal disorders characterized by the recurrence of epileptic seizures. A data set has been constructed by
collecting comprehensively all the clinical and laboratory information on 158 patients presenting epi-
leptic symptoms. In one respect, the classification criterion on the disease has been proposed by the
Commission on Classification and Terminology of the International League Against Epilepsy. The
objective of the research is to compare the syndromic classification based on clinical criteria with the
categorization achieved with a backpropagation network.

A three layer backpropagation network with one hidden layer is used in this study. The input layer
has 724 units representing a list of questions coded in bit form, and the output has 31 nodes represent-
ing the 31 possible diagnoses. Besides, the 31 diagnoses can be clustered into 7 groups. There are
totally 156 sets of data in which 134 sets correspond to reliable diagnoses and 22 sets to uncertain or
fuzzy diagnoses. The former sets are used for training and the latter for testing the generalization
capability of the trained network. Through trial and error, it was found that a hidden layer with 50
nodes gave the optimal results both in training and testing.

After training the network, the previous network is trimmed of connections and nodes with small
connection strengths, and finally the network consists of 74 input units. This process distills the data
representation scheme to an efficient form so that it gives about 80 percent of valid results on the single
diagnosis and 95 percent on the clusters of diagnosis. Of course, a more powerful approach would be
the use of a neural net-based expert system.

Boone, et al. (1990) used backpropagation neural networks for the interpretation of radiological
images in computer aided medical diagnosis of certain diseases. There are two processes involved in
the diagnosis of diseases based on radiological images: the abnormality identification of the images
and the interpretation of the abnormal findings. For the identification of abnormal anatomical struc-
tures appearing on the radiographs, one hundred 25-pixel images, generated with Gaussian noise and
with signals added to 50 percent of them, were used in the training of a three layer network to indicate
abnormality in the image. The network thus has 25 nodes in the input layer, 5 nodes in the hidden layer,
and 1 node in the output layer. For computer aided diagnosis, another backpropagation neural net-
work is used to map the relationship between radiographic findings to a list of plausible diagnoses. It
was decided that there were about 50 possible choices for radiographic findings, and 23 possible diag-
noses to the newborn chest radiographs. The training and testing results showed close consistency
with the diagnoses from doctors (79 percent of positive diagnosis and 99 of negative diagnosis).

3.7.2 Communication Systems

Casselman and Acres described a large system called DASA/LARS with extensive use of neural
networks for the diagnosis on the operation and maintenance of satellite communication networks.
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On-line sensor information in an operational environment is used for training, and the resulting neural
network-based system has already been integrated into the working environment. The diagnosis is
based on two kinds of inputs: data obtained from a swept-frequency spectrum analyzer and database
information obtained from another subsystem in the Defense Satellite Communications Systems
(DSCS). A fault is diagnosed through comparison of the observed spectral data with the planned
parameters for each carrier stored in the DOSS database.

The backpropagation network is used in the system and 9 different architectures are constructed
to diagnose a total of 13 different problems including the transponder saturation, data format prob-
lems such as wrong modulation, incorrect coding and transmitter filter malfunction, and the failure of
an earth station's autotrack feature, etc. It is interesting that four layer backpropagation networks
with two hidden layers are utilized for all the subsystems. The system has been tested on-line and has
worked remarkably well. An updated system has been installed at the satellite operations center of
DSCS at Fort Detrick, MD since 1989.

3.7.3 Mechanical Systems

Dietz, et al. (1987, 1988, and 1989) describe the fault diagnosis of jet and rocket engines by using
neural networks to construct the mapping from patterns of sensor data to a pattern associated with a
particular fault condition. Three layer uackpropagation networks with one hidden layer are used in
this study. Ajet engine diagnostic system is built to identify the difference between behavior exhibited
by bearing failures and that by fuel interruptions directly from sensor data. The architecture of the
system is hierarchical and consists of five networks for each kind of sensor data. A higher level net-
work is directly used to process the sensor data and recognize the fault type, and the two lower level
networks are then trained to identify the severity and duration of the fault. The architecture for the
process of data from a sensor is shown in Fig. 3.17.

For the current prototypic system, four sensors are employed to measure the combustion tempera-
ture, exhaust gas temperature, low pressure turbine rotational speed, and high pressure turbine rota-
tional speed. Hence the system is totally comnposee of 20 networks and the design of the input layer is
based on the sensor data acquired in a 4.0 second time interval. The training data are generated from
an engine simulation program called ATEST The testing of the trained network is performed by using
crisp data and data generated with a certain percentage of noises. The training and testing of the
system resulted in satisfying performance in jet engine diagnosis.

The article also describes another diagnosis system for the rocket engine used in the space shuttle,
using experimental test data because of the lack of theoretical models. This later approach would have
a more general implication for real-time diagnostics applications of neural networks.

3.7.4 Explosive Detection

Shea, et al. (1989 and 1990) describe the construction of a neural network-based system for explo-
sive detection at airport check-ins. The application is probably one of the most successful cases and
has generated lots of public interest in research and development of neural network technology. The
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Figure 3.17 - Architecture of A Subsystem in the Jet Engine Diagnosis System

detection of explosives is based on the presence of nitrogen in the luggage using thermal neutron acti-
vation. A three layer backpropagation network with one hidden layer is used for training and testing
the network from measurements gathered at the airport. The performance of the system is compared
with a conventional system using standard statistical technique. The key parameters that measure the
performance of the systems are the probability of detection (PD) for the minimum amount of explosive
in a threat and the probability of false alarm (PFA) on bags without explosives. The neural network
based system has been installed in several airports in parallel with the conventional system for a cer-
tain time. Through real world testing, it has been found that both systems perform equally well in
terms of detection rate, and for false alarm rate the neural network based system is considerably bet-
ter. Different learning models such as the counterpropagation network as well as the four layer back-
propagation networks have also been investigated, and performance indicates that the three layer
backpropagation network gives the best results.
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3.8 Planning, Scheduling, and Optimization

Planning and scheduling problems are highly constrained optimization problems or combinato-
rial optimization problem that is known to be NP-hard. The well known Traveling Salesman Problem
is a good example involving path planning. The current approach to such problems is difficult if not
impossible to find with an optimal or nearly-optimal solution. Usually, an admissible solution is good
enough for acceptance. Since its advent, the Hopfield network has been considered by many research-
ers to obtain an optimal or nearly-optimal solution for this kind of NP-complete problem, and exten-
sive research has been carried out on the solution'to the Traveling Salesman Problem. Many real world
problems, such as job-shop scheduling in mechanical engineering, crew scheduling in food service
industry, and material handling, are combinatorial optimization problems and can be transformed
into the frame of a Traveling Salesman Problem. Because of this, use of the Hopfield style network for
planning and scheduling becomes feasible.

Though standard, Hopfield and Tank's network can be used to solve certain small optimization
problems with constraints, the general use of this approach is impeded by its tendency to converge to
the local minimum and its poor scaling properties for large problems. To overcome this difficulty,
various modifications on the Hopfield and Tank network have been proposed. Some of the well known
schemes are the Integer Linear Programming Neural Networks (Foo and Takefuji, 1988), the elastic net
(Durbin and Willshaw, 1987), Supplier-Consumer Net (Parunak, et al., 1987), the Primal-Dual net-
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work (Culioli, et al., 1990) and many others. After transforming a shared resource scheduling problem
into an unshared resource problem, Bourret and Goodall (1989) proposed the competitive activation
networks.

lb date, different optimization problems encountered in various fields of disciplines have been
solved with neural networks. Poliac, et al. (1987) used a novel representation scheme to solve the crew
scheduling problem; Parunak, et al. (1987) proposed a suoplier-consumer network to solve material
handling p, iblems; the Airline Marketing Thctician (Hutchison and Stephens, 1987) may be the first
commercial application. For job-shop scheduling problem, Foo and Takefuji (1988), Chen (1990), and
Zhou, et al. (1990), have investigated different approaches and obtained satisfactory results. Other
applications include the time-table scheduling (Yu, 1990), object avoidance touring planning (Wong
and Funka-Lea, 1990), linear programming (Culioli, et al., 1990; Kalaba and Moore, 1990), path opti-
mization (Hassoun and Sanghvi, 1990), and the scheduling of satellite broadcasting times (Bourret, et
al., 1990).

In the following paragraphs, s',ine of the approaches to the scheduling and planning probleas are
described in detail to highlight the main features. There are also many publications on the theoretical
analysis of optimization oriented neural networks (Maa and Shanblatt, 1990; Hellstrom and Kanal,
1990; Barbosa and de Carvalho, 1990). Due to time and space limitations, only some of the literature
on that subject is included in the reference list.

3.8.1 Satellite Antennae Scheduling - Bourret a;nd Goodall (1989)

The results reported by Bourret and Goodall (1989) are unique since it proposes and proves a
theorem that transforms a shared resource scheduling problem into an unshared resource problem,
and it introduces a competitive activation based neural network to solve the unshared resource sched-
uling problem. The proposed approach is tested on the optimal scheduling of antennae for low level
satellites. The detailed antennae scheduling problem is, given the required broadcasting time, the
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priority level of each satellite, and the time intervals within which the satellites are in sight of the vari-
ous antennae, to optimize the total broadcasting time weighted by the priority of satellites.

The architecture of the competitive activation based neural network consists of three layers which
are designated as layer R, layer C, and layer T, as is shown in Fig. 3.18. Each unit in layer R represents a
time slice assigned to a satellite among those competing for that time slice, and the unit uses the com-
petitive activation rules. Layer C consists of units that always keep the same activation level and repre-
sent each possible time slice. At the beginfing of the computation, the strength of links between layer
C and layer R is the given priority of the satellite. The last layer, Layer T, is composed of a number of
units that correspond to the number of satellites in the system and the activation level of each unit
represents how much broadcasting time has been scheduled for each satellite. A special competitive
learning rule similar to the standard winner-takes-all sc ,eme is proposed to determine the winner in
layer R as well the modification of connection strengths or weights.

In aiiother article, Bourret, et al. (1990) identifies the drawbacks encountered in the competitive
activation based network for resource scheduling probiem and presents a new implementation with a
modified activation rule. The modified algorithm and architecture has the following features: 1) a new
competitive output function is introduced to distribute the activation in layer C among competitors in
layer R, 2) links are created between nodes in layer R to have competition with each other, 3) the decay
factor is added to the activation rule for nodes in layer R, and 4) the activation update rule for nodes in
layer R is modified to include a certain amount of noises. The modified scheme overcomes the short-
comings of the previous system and gives more robust results in different simulation problems on re-
source scheduling.

3.8.2 Robot Assembly Seqt ice Planning - Chen (1990)

Chen (1990) describes the theory and application of a Hopfield network to the solution of an as-
sembly sequence problem which is also an AND/OR precedence-constrained traveling salesman
problem. This problem involves the generation of all the possible assembly sequences and the deter-
mination of the most promising one. A modified Hopfield network is used to solve the planning prob-
lem. At first, the geometric constraints among parts are mapped into the connection weight matrix.
The optimum assembly sequence can then be found through the ability of neurons' continuous dynam-
ics adaptation to reach a lower energy measurement of the system.

In using Hopfield and Tank's approach to this combinatorial problem, binary threshold neurons
and symmetric connection weight matrix are enforced. The precedence constraints can be mapped to
the connection weight among neurons through giving the connection a positive or negative real value or
using the property of biases to set the general level of excitability of the network such that the change in
input-output relation at tach neuron will result in a change of the activation level of the system. The
optimum sequence with AND precedence relationship is solved using traditional second-order Hop-
field network. A higher-order Hopfield network is also designed to solve the OR precedence relation-
ship assembly sequences problem.
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3.8.3 Linear Programming - Culioli, et al. (1990)

Culioli, et al. (1990) introduces a new Primal-Dual network to solve the general linear program-
ming problem. The classical neural network approach to the linear programming problem is Hopfield
and Tank's approach, and the solution usually converges to stable states. However, Hopfield and
Tank's approach does not, in general, yield aa optimal solution and it has poor scaling property. This
shortcoming may come from the penalization treatment of the constraints. In the approach proposed,
the constraints are treated with Lagrangian multipliers that converge to primal and dual admissible
solution. It shows that the Primal-Dual network converges to admissible solutions, and can be used to
get a very good approximation of the optimal cost.

3.8.4 Job-Shop Scheduling - Foo and Takefuji (1989)

Job-shop scheduling is a resource allocation problem involved with machines and the task jobs.
Each job may also consist of several subjobs subject to precedence constraints. With this scheduling
problem, it is very hard to obtain an optimal solution due to the large number of constraints. The
Hopfield network and the Integer Linear Programming Neural Networks have been investigated for
the job-shop scheduling problem, and it was observed that the two networks are not suitable for hard-
ware implementation due to their poor scaling properties (Foo and Takefuji, 1988).

Foo and Thkefuji (1988) are probably the first using the Hopfield type network to solve the job-
shop scheduling problem. The approach proposed has a general use for all the NP-complete optimi-
zation problems with constraints. At first, the job-shop problem is mapped to a 2-D matrix represen-
tation of neurons similar to those for solving the traveling salesman problem. The constraints on op-
erational precedence are imbedded in the network through application of constant positive and nega-
tive current biases to specific nodes. The solution of a job-shop problem is encoded in a set of cost
function trees in the matrix of stable states. Each node in the set of trees represents a job, and each link
represents the interdependency between jobs. The cost attached to each link is a function of the pro-
cessing time of a particular job. The starting time of each job can be determined by traversing the
parts leading to the root node of the tree. A computation circuit is used to compute the total comple-
tion times of all jobs, and the cost difference is added to the energy function of the Hopfield network.
To reach the optimal solution, Simulated Annealing is used to help the system escape from local mini-
mum. The use of an annealing algorithm is the most salient feature of the proposed approach.

The drawback associated with the use of an annealing algorithm is that it is computationally ex-
pensive because the procedure may take an infinite amount of time to find an optimal solution if the
size of the problem grows larger and larger. This is also the criticism of using the Hopfield network for
combinatorial optimization problems in general. The performance of the algorithm is tested by solv-
ing several job-shop scheduling problems with various degrees of complexity.

Foo and Takefuji (1988) also proposed an integer linear programming neural network based on a
modified Tank and Hopfield neural network model by using linear measurement of the cost function to
solve the job-shop scheduling problem. The cost function for minimization is the total starting times
of all jobs subject to precedence constraints. The set of integer linear equations is solved by an itera-
tive linear programming with integer adjustments technique, and the linear and nonlinear zero-one
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variables are represented by linear sigmoid and nonlinear high-gain amplifiers with a response of a
step function. The approach shows some improvement over the Hopfield network with simulated an-
nealing.

Recently, Zhou, et al. (1990) introduced a novel approach to the job-shop scheduling problem by
using a modified version of the Linear Programming Network described by Thnk and Hopfield (1986).
The proposed model uses a linear cost function instead of the quadratic energy function in Hopfield
network. The important feature of the model is the incorporation of a product term into the energy
constant function instead of using too many control varables to resolve conflicts of operation on the
same machine. In a sense, it in fact implements the multiplication operation as an addition operation
so that the resulting network has good scaling capability. On the other hand, in solving a simulation
problem with 4/3 job-shop scheduling, the proposed network only uses a small fraction of neurons and
connections of the regular Hopfield network or Integer Linear Programming Neural Networks (Foo
and Tkefuji, 1988).

3.8.5 Path Optimization - Hassoun and Sanghvi (1990)

Hassoun and Sanghvi propose a new neural network architecture for the path optimization prob-
lem in which a shortest path between two points in two or higher dimensions is sought. The architec-
ture of the network is of multilayer modular form and the basic network consists of a locally-inteicon-
nected stage of simple neural subnets called comparators which perform node potential computations
for a search map with one grounded node A. After certain computations are done at all nodes and the
resulting collective computation leads to a stable potential surface having zero potential at the ground
node A, an identical network is used to compute the second potential surface having another ground
node B as the zero potential node. The nodes A and B are then assumed to be the end points of the
optimal path. Next, the corresponding node potential pairs at A and B are added for nodes in the grid
separately and each sum is compared to the minimum potential of the network using a final layer of
input threshold neurons. The output of the final layer spatially encodes the optimal path between
points A and B. The computation time of the network is determined by the speed at which the poten-
tial wave front spreads away from the ground node. In general, the convergence rate is very fast for the
network. The performance of the algorithm is demonstrated through optimal path computation in
2-D space.

3.8.6 Time-Table Scheduling - Yu (1990)

Time-table scheduling is perhaps one of the classical problems in Al applications. Yu (1990) de-
scribes the application of a Hopfield network to the class scheduling in an educational institute. The
scheduling problem is basically a graph coloring or graph partitioning problem. The relationship be-
tween the constraints and the time-slots can be represented by an edge-weighted graph which is very
similar to the graph arisen from the decomposition problem converting from loosely synchronous
problems to parallel machines. The Simulated Annealing algorithm is used with the optimization pro-
cess to improve the capability of the network in escaping the local minimum. A problem of scheduling
64 classes into two time-slots is solved with the proposed approach.
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3.8.8 On the Traveling Salesman Problem

Some references directly related to the solution of the raveling Salesman Problem are listed below
to provide some pointers for those who are specifically interested in this problem.
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APPENDIX A:
NEURAL NETWORK JOURNALS

Title: Neural Networks
Publisher: Pergamon Press
Address: Pergamon Journals Inc.

Fairview Park,
Elmsford, New York 10523

Official journal of the International Neural Network Society (INNS). Contains original contribu-
tions, invited review articles, letters to editors, invited book reviews, editorials, announcements,
INNS news, and software surveys. The contributed papers are generally of high quality.

Title: Neural Computation
Publisher: MIT Press
Address: MIT Press Journals

55 Hayward Street
Cambridge, MA 02142-9949
Phone: (617) 253-2889

Combination of reviews, views, original contributions, and letters. Articles in this journal are
usually short, but the quality is good.

Title: IEEE Transaction on Neural Networks
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Address: IEEE Service Center

445 Hoes Lane
PO. Box 1331
Piscataway, NJ 08855-1331
Tel: (201) 981-0060

Devoted to the science and technology of neural networks which.disclose significant technical
knowledge, exploratory developments and applications of neural networks from biology to soft-
ware and hardware. Emphasis is on artificial neural networks. Specific aspects include self orga-
nizing systems, neurobiological connections, network dynamics and architecture, speech recogni-
tion, electronic and photonic implementation, robotics, and controls. Includes letters concerning
new research results.

Title: Journal of Neural Network Computing, Technology, Design, and Applications
Publisher: Auerback Publishers
Address: Auerback Publishers

210 South Street
Boston, MA 02111-9812
Tel: (800) 950-1216

About 5 indepth articles per issue; bookshelf section provides a several page introduction to a
specific topic and a list of references for further reading on that topic; software reviews. The
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targets of this journal are researchers and managerial personals working in industry and govern-
mental agencies.

Title: International Journal of Neural Systems
Publisher: World Scientific Publishing
Address: World Scientific Publishing Co.

687 Hartwcll Street
Teaneck, NJ 07666
'Ibl: (201) 837-8858

The International Journal of Neural Systems is a quarterly journal which covers information pro-
cessing in natural and artificial neural systemz. It publishes original contributions on all aspects
of this broad subject that involves physics, biology, psychology, computer science, and engi-
neering. Contributions include research papers, reviews and short communications. The journal
presents a fresh undogmatic attitude towards this multidisciplinary field with the aim to be a fo-
rum for novel ideas and improved understanding of collective and cooperative phenomena with
computational capabilities.

Title: Connection Science: Journal of Neural Computing, Artificial Intelligence and
Cognitive Research

Publisher: Czrfax Publishing
Address: Carfax Publishing Company

P. 0. Drjx 25
Abingdon, Oxfordshire
OX14 3UE, UK

Title: Concepts in NeuroScience
Publisher: World Scientific Publishing
Address: World Scientific Publishing Co.

687 Hartwell Street
Teaneck, NJ 07666
Tel: (201) 837-8858

Title: Neurocomputers
Publisher: Gallifrey Publishing
Address: Gallifrey Publishing

PO Box 155
Vicksburg, Michigan 49097
Tel: (616) 649-3772

Title: Complex System
Publisher: Complex Systems Publications
Address: Complex Systems Publications, Inc.

P.O. Box 6149
Champaign, IL 61821-8149

Title: AI EXPERT
Publisher: Miller Freeman Publications

- 123 -



Address: 500 Howard St.
San Francisco, CA 94105
Tel: (415) - 397-1881

A popular Al magazine and self-claimed as the magazine of artificial Intelligence in Practice.
Publishes introductory articles on neural networks such as the series: "Neural Networks Primer"
and "Using Neural Nets" by Maureen Caudill.

Title: N aural Network Review
Publisher: Lawrence Erlbaum Associates (LEA)
Address: Lawrence Erlbaum Associates Inc.

365 Broadway
Hillsdale, NY 07642

Review Journal. Reviews of book, products, selected papers from other journals; announcements
for news items, books, journals, and conference proceedings; copies of table of contents for sever-
al journals and proceedings. Accompanying each review article, it usually presents an original
author's response.

Title: Neural Network News
Publisher: AlWeek Inc.
Address: Neural Network News

2555 Cumberland Parkway, Suite 29,
Atlanta, GA 30339
Tel: (404) 434-2187

A commercial newsletter. It presents reviews of neural network conferences, new products, and
research activities in the United States, Europe, and Japan.
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APPENDIX B:
PUBLICLY AVAILABLE SIMULATORS FOR ARTIFICIAL
NEURAL NETWORKS

This compiled listing on publicly avail-t le software for neural networks simulation is based on
information from Neural Network Digest - an electronic bulletin board on Internet. Information
regarding the purpose and availability of each software is not guaranteed to be completely correct
because the validity of each ftp address has not been verified.

BPS - George Mason University Back Prop Simulator
Current version is 1.01 (Nov., 1989)

A special-purpose simulator for backpropagation and a BP speedup technique called "gradient
correlation." Available via anonymous ftp from gmuvax2.gmu.edu (129.174.1.8). Distributed as
executable for VAX 8530 under Ultrix 3.0, and versions for 8088 based IBM PC, and 80286/386 IBM PC
machines. Includes examples and a tutorial document. Source code license is available.

Contact:
Eugene Norris
Computer Science Department
George Mason University
Fairfax, Virginia 22032
Email: enorris@gmuvax2.gmu.edu
Tel: (703) 323-2713

MIRRORS/iI - Maryland MIRRORS/II Connectionist Simulator
A general-purpose connectionist simulator. MIRRORS/II is implemented in Franz Lisp and will run
under Opuses 38,42, and 43 of Franz Lisp on UNIX systems. It is currently running on a MicroVAX,
VAX and SUN 3.

To obtain this simulator you must sign an institutional site license. A license for individuals is not
acceptable. The only costs incurred are for postage for a printed copy of the manual and tape cartridge
(you send your own 1/4" cartridge or TK50 cartridge to them, if desired.) Instructions for obtaining the
software via ftp are returned to you upon receipt of the license agreement. To obtain a copy of the
license send your U. S. Mail address via e-mail to: mirrors@cs.umd.edu.

Or by U.S. Mail to:

Lynne D'Autrechy
University of Maryland
Department of Computer Science
College Park, MD 20742

- 125 -



NeurDS - The Neural Design and Simulation System.
Current Version is 3.1 (May, 1989)

A general purpose simulator. The system is licensed on a no-fee basis to educational institutions
by Digital Equipment Corporation. lb obtain information, send your U. S. or electronic mail address
to:

Max McClanahan
Digital Equipment Corporation
1175 Chapel Hills Drive
Colorado Springs, Colorado 80920-3952
Email: mcclanahan%cookie.dec.com@decwrl.dec.com

You should receive instructions on how to obtain a copy of the manual and copies of the license
agreement.

The NeurDS system will run on any Digital platfoxm including Vax/VMS, Vax/Ultrix, and
DECsystem/Ultrix. A graphics terminal is not required to support the window interface. Specific
models are described using a superset of the C programming language, and compiled into a simulator
form. This simulator can accept command scripts or interactive commands. Output can take the form
of a window-type environment on V' 100 terminals, or nonwindow output on any terminal.

FULL - Fully connected temporally recurrent neural networks.
A demonstration network described in "Learning State Space Trajectories in Recurrent Neural
Networks."

The author (Barak Pearlmutter, bap@f.gp.cs.cmu.edu) describes this as "a bare bones simulator
for temporally recurrent neural networks" and claims that it should vectorize and parallelize well. It is
available for ftp from doghen.boltz.cs.cmu.edu. Login as "ftpguest", password "aklisp". Be sure to ftp
as binary for the file "full/full.tar.Z" (you must either use a directory named full on your local machine,
or use "get" and let it prompt you for remote and local file names). Do not attempt to change
directories. It is copyrighted and is given out for academic purposes.

GRADSIM Connectionist Network Simulator.
A special-purpose simulator specifically designed for experiments with the temporal flow model.
Latest Version 1.7.

In C, implementations on VAX (VMS & Ultrix), Sun, and CYBER are mentioned. Includes an
excellent article with references. The simulator is available for anonymous ftp from ai.toronto.edu
(128.100.1.65). For information contact:

Raymond Watrous
Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4
Email: watrous@ai.toronto.edu
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GENESIS - GEneral NEural Simulation System with
XODUS - X-windows Output and Display Utility for Simulations
A general simulator. Currently Beta-Test Version, 1990. From the release announcement (January
1990 by Jim Bower

Full source for the simulator is available via ftp from genesis.cns.caltech.edu (131.215.135.64). To
acquire FTP access to this machine it is necessary to first register for distribution by using telnet or
rlogin to log in under user "genesis" and then follow the instructions. When necessary, tapes can be
provided for a handling fee of US$50. Those requiring tapes should send requests to
genesis-req@caltech.bitnet. Any other questions about the system or its distribution should also be
sent to this address. GENESIS and XODUS are written in C and run on SUN and DEC graphics work
stations under UNIX (version 4.0 and up), and X-windows (version 11). The software requires 14 meg
of disk space and the tar file is approximately 1 meg.

The current distribution includes full source for both GENESIS and XODUS as well as three
tutorial simulations (squid axon, multicell, visual cortex). Documentation for these tutorials as well as
three papers describing the structure of the simulator are also included. As described in more detail in
the "readme" file at the ftp address, those interested in developing new GENESIS applications are
encouraged to become registered members of the GENESIS users group (BABEL) for an additional
one time $200 registration fee. As a registered user, one is provided documentation on the simulator
itself, access to additional simulator components, bug report listings, and access to a user's bulletin
board.

SunNet
A generalized simulator. Version 5.5.2.4 currently.

Available for anonymous ftp from boulder.colorado.edu (128.138.240.1). While this program was
obviously written for Sun workstations (versions for Suntools and the X-window environment), the
documents list other configurations. These include a nongraphic version which runs on "any UNIX
machine," and versions which run on an Alliant or UNIX machine and send data to a graphics support
program running on a Sun workstation. It is very e.asy to install. A mailing list exists for users of the
simulator.

RCS - The Rochester Connectionist Simulator
A general simulator. Version 4.2 currently.

Available for anonymous ftp from cs.rochester.edu (192.5.53.209). Tapes may be purchased (1600
bpi 1/2" reel or QIC-24 Sun 1/4" cartridge) from:

Peg Meeker
Computer Science Department
University of Rochester
Rochester, New York 14627

C source code is provided, including a graphic interface which may function under X Windows or
SunView on Sun Workstations. A wide variety of Unix machines are supported, and the simulator may
be used without the graphics interface. A version for the MacIntosh is included in the distribution.
Mailing lists exist for users and bug reports.
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SFINX - Structure and Function in Neural Connections
A General Simulator. Version 2.0 (November 1989)

In order to ftp this simulator, a license agreement must be submitted. Upon receipt of this

agreement, instructions and the password to ftp the software are made available. To obtain the license

write:

Machine Perception Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024

This system requires color to operate the graphics interface, but may be operated without
graphics. Support for Sun, Ardent Titan, HP 300, and IBM PC RT machines is specifically mentioned,

but other Unix platforms should function as well. Specific graphics support is provided for Matrox
VIP 1024, Imagraph AGC-1010P, HP Starbase and X Windows.

Mactivation
A specialized simulator for investigating associative memory using the delta rule and Hebbian
Learning. Version 3.3 currently.

A public domain version is available for anonymous ftp from the University of Colorado at
Boulder (boulder.colorado.edu, 128.138.240.1) or possibly by contacting the author.

Mike Kranzdorf
University of Colorado
Optoelectronic Computing Systems Center
Campus Box 525
Boulder, Colorado 80309-0525
Email: mikek@boulder.colorado.edu

Future versions will probably not be public domain, but will be available from Oblio, Inc., 5942

Sugarloaf Road, Boulder, Colorado 80309. Provided as executable for the Apple MacIntosh.

PDP Simulators
Several special purpose simulators are provided with the following book:

McClelland, J. L., and David.E. Rumelhart, Explorations in ParallelDistributed Processing, Vol.III,

Cambrige: MIT Press, 1988.

The simulators were written in C, and versions for both the IBM PC and the MacIntosh exist.

IHopfield-style Network Simulator
A Special Purpose simulator for experimentation with the Hopfield-style network.

Software is available by e-mail upon request from the author, Arun Jagota. It is written in C and

should be useful on 32-bit Unix machines, and a MSDOS version is also supplied. Arun's email

address is jagota@cs.buffalo.edu.
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APPENDIX C:
NEURAL NETWORK BOOKS AND PROCEEDINGS

This section lists some of the well known publications on neural networks, connectionist systems,
computational psychology, genetic algorithms, vision and perception, and proceedings of conferences
on neural networks, to give a historical perspective on the development of neural network research, to
provide fundamental materials for beginners embarking on this field, and to provide researchers with
the state-of-the-art publications from recent conferences dedicated to the research and application of
neural networks.

1. Proceedings of the IEEE First International Conference on Neural Networks, IEEE, New York, June

1987.

2. Proceedings of the IEEE International Conference on Neural Networks, IEEE, New York, June 1988.

3. Proceedings of the 1988 Connectionist Models Summer School, D. lburetzsky, G. Hinton, and T
Sejnowski, Eds., Carnegie Mellon University, Morgan Kaufmann Publishers, San Mateo, CA,
1989.

4. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE and
the International Neural Network Society, Washington, D. C., 1989.

5. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE and
the International Neural Network Society, Washington, D. C., 1990.

6. Proceedings of the International Joint Conference on Neural Networks, Co-sponsored by IEEE and
the International Neural Network Society, San Diego, 1990.

7. Proceedings of the First International Conference on Genetic Algorithms, J. J. Grefenstettee (Ed.),
Lawrence Erlbaum Publishers, Hillsdale, NJ, 1987.

8. Proceedings of the Second International Conference on Genetic llgorithms, J. J. Grefenstettee,
(Ed.), Lawrence Erlbaum Publishers, Hillsdale, NJ, 1988.

9. Proceedings of the Third International Conference on Genetic Algorithms, J. D. Schaffer (Ed.),
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

10. Ackley, D., A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic Publishers, 1987.

11. Aleksander, I. (Ed.), Neural Computing Architecture, The MIT Press, Cambridge, MA, 1989.

12. Amari, S. I., and Arbib, M. (Eds.), Competition and Cooperation in Neural Networks,
Springer-Verlag, New York, 1982.

13. Anderson, J. and Lehmkuhle, S. (Eds.), Synaptic Modification, Neuron Selectivity, and Nervous
System Organization, Lawrence Erlbaum, Hillsdale, NJ, 1985.

14. Anderson, D. Z. (Ed.), Neural Information Processing Systems, American Institute of Physics, 1988.

15. Arbib, M. A., Caplan, D., and Marshall, J. C. (Eds.), Neural Models of Language processing, The
Academic Press, N 'w York, 1982.
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16. Arbib, M. A., Brains, Machines and Mathematics, 2nd edition, Springer-Verlag, New York, 1987.

11. Basar, E., Flohr, H., Haken, H., and Mandel, A. J. (Eds.), Synergetics of the Brain, Springer-Verlag,
New York, 1983.

18. Beck, J., Hope, B., and Rosenfeld, A. (Eds.), Human and Machine Vision, Academic Press, New
York, 1983.

19. Caianiello, E. R. (Ed.), Parallel Architectures and Neural Networks, World Scientific, Singapore,
1989.

20. Carbonell, J. G. (Ed.), Machine Learning: Paradigms and Methods, The MIT Press, Cambridge,
Massachusetts, 1990.

21. Casti, J. L., Alternate Realities: Mathematical Models of Nature and Man, Wiley Interscience,
1989.

22. Caudill, M., and Butler, C., Naturally Intelligent Systems, The MIT Press, Cambridge,
Massachusets, 1990.

23. Commons, M. L., Grossberg, S., and Staddon, J. E. R. (Eds.), Neural Network Models of
Conditioning and Action, Lawrence Erlbaum, Hillsdale, NJ, 1991.

24. Cornsweet, T N., Visual Perception, Academic Press, New York, 1970.

25. Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufmann Publishers, Los
altos, CA, 1987.

26. Davis, J., Newburgh, R., and Wegman, E. (Eds.), Brain Structure, Leaning, and Memory, AAAS
Symposium Series, 1987.

27. Dayhoff, J. E., Neural Network Architectures: An Introduction, Van Nostrand Reinhold, New York,
1990.

28. Denker, J. S. (Ed.), Neural Networks for Computing, American Institute of Physics, 1988.

29. Durbin, R., Miall, C., and Mitchson, G., The Computing Neuron, The Academic Press, New York,
1989.

30. Eberhart, R. C., and Dobbins, R. W (Eds.), Neural Network PC Tools, The Academic Press, New
York, 1990.

31. Eckmiller, R., Hartmann, G., and Hauske, G. (Eds.), Parallel Precessing in Neural Systems and
Computers, North-Holland, Amsterdam, The Netherlands, 1990.

32. Freeman, J., and Skapura, D.,Artificial Neural Systems; Theory and Practices, The Academic Press,
New York, 1991.

33. Freeman, W J., Mass Action in the Nervous System, The Academic Press, New York, 1975.

34. Garner, W R., The Processing of Information and Structure, Lawrence Erlbaum associates, Inc.,
Hillsdale, NJ, 1974.

35. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishers, New York, 1989.
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36. Grossberg, S. (Ed.), Mathematical Psychology and Psychophysiology, American Mathematical
society, Providence, RI, 1981.

37. Grossberg, S., Studies of Mind and Brain: Neural Principles of Learning, Perception, Development,
Cognition and Motor Control, Reidel Press, Boston, 1982.

38. Grossberg, S., and Kuperstein, Neural Dynamics of Adaptive Sensory Motor Control: Ballistic Eye
Movements, North-Holland, Amsterdam, 1986.

39. Grossberg, S., The Adaptive Brain, I: Cognition, Learning, Reinforcement and Rhythm,
North-Holland, Amsterdam, 1987.

40. Grossberg, S., The Adaptive Brain, II: Vision, Speech, Language, and Motor Control,
North-Holland, Amsterdam, 1987.

41. Grossberg, S. (Ed.). Neural Networks and Natural Intelligence, The MIT Press, Cambridge,
Massachusets, 1988.

42. Hawkins, R. D., and Bower, G. H. (Ed.), Computational Models of Learning in Simple Neural
Systems, The Academic Press, New York, 1989.

43. Hebb, D. 0., The Organization of the Behavior, Johai Wiley and Sons, New York, 1949.

44. Hertz, J., Krogh, A., and Palmer, R., Introduction to the Theory of Neural Computation, The
Academic Press, New York, 1990.

45. Hinton, G. E., and Anderson, J. A. (Eds.), Parallel Models of Associative Memory, Lawrence
Erlbaum, Hillsdale, NJ, 1981.

46. Janko, W H., Roubens, M., and Zimmermann, H.-J. (Eds.), Progress in Fuzzy Sets and Systems,
Theory And Decision Library, Kluwer Academic Publishers, The Netherlands, 1990.

47. Khanna, T, Foundations of Neural Networks, Addison-Wesley, New York, 1990.

48. Koch, C. (Ed.), Computation and Neural Systems, The Academic Press, New York, 1990.

49. Kohonen, T, Associative Memory: A System Theoretical Approach, Springer-Verlag, New York,
1977.

50. Kohonen, T, Self-Organization and Associative Memory, Springer-Verlag, New York, 1984.

51. Levine, D. S., Introduction to Neural and Cognitive Modeling, Lawrence Erlbaum, Hillsdale, NJ,
1990.

52. Levine, D. S., and Levcn, S. J. (Eds.), Motivition, Emotion, and Goal Direction in Neural Networks,
Lawrence Erlbaum, Hillsdale, NJ, 1990.

53. MacGregor, R. J., Neural and Brain Modeling, The Academic Press, New York, 1987.

54. Marr, D., Vision, San Francisco, W H. Freeman, 1982.

55. Mead, C., Analog VLSI and Neural Systems, The Academic Press, New York, 1989.

56. Mel, B., Connectionist Robot Motion Planning, The Academic Press, New York, 1990.

57. Minsky, M., and Papert, S., Peceptrons: An Introduction To Computational Geometry, The MIT
Press, Cambridge, Massachusetts, 1969, and 1988.
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58. Pao, Y. -H., Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, New York, 1989.

59. Parten, C., harston, C., Maren, A., and Pap, R., Handbook of Neural Computing Applications,
Academic Press, 1990.

60. Rosenblatt, F, Principles of Neurodynamics, Spartan Books, Washington, D. C., 1962.

61. Rumelhart, D. E., McClelland, J. L., and the PDP Research group, Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, Vol. 1-3, The MIT Press, 1986.

62. Simpson, P. K., Artificial Neural Systems: Foundations, Paradigms, Applications and
Implementations, Pergamon Press, New York, 1990.

63. Soucek, B., and Soucek, M., Neural and Massively Parallel Computers, Wiley, 1989.

64. Taylor, J. G., and Mannion, C. L. T (Eds.), New Developments in Neural Computing, Adam Hilger,
New York, 1989.

65. Touretzky, D. (Ed.), Advances In Neural Information ProcessingSystems 1, Morgan Kaufmann, CA,
1989.

66. Touretzky, D. (Ed.),Advances in Neural Information ProcessingSystems 2, Morgan Kaufmann, CA,
1990.

67. Vemuri, V. (Ed.), Artificial Neural Networks: Theoretical Concepts, Computer Society Press, IEEE,
New York, 1988.

68. Von Newmann, J., The Computer and the Brain, New Haven, Yale University Press, 1958.

69. Wasserman, P., Neural Computing: TheoryAnd Practice, Van Nostrand Reinhold, New York, 1990.

70. Wasserman, P. D., and Oetzel, R. M., Neuralsource: The Bibliographic Guide To Artificial Neural
Networks, Van Nostrand Reinhold, New York, 1990.

71. Yovits, M. C., Jacobi, G. T, and Goldstein, G. D. (Edg.), Self-Organization Systems, Spartan Books,
Washington, D. C., 1962.

72. Zornetzer, S. F, Davis, J. L., and Lau, C. (Eds.), An Introduction to Neural and Electronic Networks,
Academic Press, New York, 1990.
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